首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Propeller sheet cavitation is the main contributor to high level of noise and vibration in the after body of a ship. Full measurement of the cavitation-induced hull pressure over the entire surface of the affected area is desired but not practical. Therefore, using a few measurements on the outer hull above the propeller in a cavitation tunnel, empirical or semi-empirical techniques based on physical model have been used to predict the hull-induced pressure (or hull-induced force). In this paper, with the analytic source model for sheet cavitation, a multi-parameter inversion scheme to find the positions of noise sources and their strengths is suggested. The inversion is posed as a nonlinear optimization problem, which is solved by the optimization algorithm based on the adaptive simplex simulated annealing algorithm. Then, the resulting hull pressure can be modeled with boundary element method from the inverted cavitation noise sources. The suggested approach is applied to the hull pressure data measured in a cavitation tunnel of the Samsung Heavy Industry. Two monopole sources are adequate to model the propeller sheet cavitation noise. The inverted source information is reasonable with the cavitation dynamics of the propeller and the modeled hull pressure shows good agreement with cavitation tunnel experimental data.  相似文献   

2.
对船舶无空泡螺旋桨非定常推力脉动及其诱导的线谱噪声进行了研究,主要目的在于螺旋桨非定常推力脉动理论预报方法的验证。基于速度势面元法计算得到非均匀流场中无空泡螺旋桨的推力脉动,在大型循环水槽中利用非定常动力仪测试得到全附体船后螺旋桨的脉动推力,以脉动推力作为声源项预报得远场线谱噪声。一阶叶频非定常推力系数理论计算值与试验值最大相差29.3%,由此引起的线谱噪声差别为3.0 dB。上述结果表明,面元法预报船后螺旋桨非定常推力脉动已达到较高精度,为船舶螺旋桨低频线谱噪声的预报提供了物理基础和重要参数。   相似文献   

3.
PREDICTION OF NON-CAVITATING UNDERWATER PROPELLER NOISE   总被引:2,自引:0,他引:2  
Non-cavitation noise of underwater propeller is numerically investigated. The main purpose is to analyze non-cavitation noise in various operating conditions with different configurations. The noise is predicted using time-domain acoustic analogy and boundary element method. The flow field is analyzed with potential-based panel method, and then the time-dependent pressure data are used as the input for Ffowcs Williams-Hawkings formulation to predict the farfield acoustics. Boundary integral equation method is also considered to investigate the effect of ducted propeller. Sound deflection and scattering effect on the duct is considered with the BEM. The governing equations are based on the assumption that all acoustic pressure is linear. A scattering approach is applied in which the acoustic pressure field is split into the known incident component and the unknown scattered component. Noise prediction results are presented for single propeller and ducted propeller in non-uniform flow conditions similar to real situation. The investigation reveals that the effect of a duct on the acoustic performance propeller is small in the far field under non-cavitating situations since the noise directivities of single and ducted propellers are almost the same. Only the high order BPFs are influenced by the existence of the duct.  相似文献   

4.
Prediction and validation of low-frequency line spectrum noise from ship propeller under non-cavitating condition is presented.The flow field is analyzed with potential-based panel method,which requires the hydrodynamic forces to be integrated over the actual blade surface,rather than over the mean-chord surface.Then the pressure data is used as the input for Ffowcs Williams-Hawkings formulation to predict the far field acoustics.At the same time,propeller unsteady force is measured in hull-behind condition in China Large Cavitation Channel(CLCC).Line spectrum noise of the 1st blade passage frequency(BPF) of a five-bladed propeller operating in a non-uniform flow field is got according to the calculated and measured unsteady forces,in which good agreement is obtained,and the 1st BPF noise difference is within 3.0 dB.The investigation reveals that prediction precision of the propeller's 1st BPF unsteady force with panel method have reached engineering practical degree,providing significant parameters for prediction of propeller line spectrum noise.  相似文献   

5.
The primary aim of machinery isolation in marine vessels is to isolate structural vibration of the onboard machinery from the hull and to reduce far-field radiation of underwater noise. A substantial proportion of the total submarine mass is on flexible mounts that isolate supported masses from the hull at frequencies above the mounting system resonant frequency. This reduces the dynamically effective mass of the hull and affects the signature of the marine vessel due to propeller excitation. A fully coupled finite element/boundary element (FE/BE) model has been developed to investigate the effect of mass distribution and isolation in a submerged hull. The finite element model of the structure includes internal structures to represent the machinery and other flexibly mounted components. Changes in the radiated sound power demonstrate the effect of machinery isolation on the acoustic signature of the submerged hull due to the external propeller forces. Results are also presented to show how the arrangement of flexible mounts for a large internal structure can influence the radiation due to machinery forces.  相似文献   

6.
Using periodic structure theory, the suppression of vibration and noise radiation from an underwater vehicle due to excitation from propeller forces is investigated. The underwater vehicle is modelled in two parts (the hull and the propeller/shafting system). A model of the propeller/shafting system is constructed using a modular approach and considers the propeller, shaft, thrust bearing, isolation structure and foundation. Different forms of isolator are considered – a simple spring-damper system, a continuous rod and a periodically layered structure. The dynamic properties of the underwater vehicle and the isolation performances of various isolators are compared and analysed. The stop band properties of the periodic isolator are used to enhance the passive control performance. Furthermore, an integrated isolation device is proposed that consists of the periodic isolator and a dynamic absorber, and its isolation performance is investigated. The effects of the absorber parameters on the performance of the integrated device are also analysed. Finally, the radiated sound pressure is calculated to verify the attenuation. The numerical results show that the vibration and noise radiation are greatly attenuated in the stop bands. By optimising the design of the periodic isolators and its integrated structures, the suppression of the vibration and noise radiation can be improved effectively.  相似文献   

7.
This paper theoretically investigates the use of inertial actuators to reduce the sound radiated by a submarine hull in bending vibration under harmonic excitation from the propeller. The radial forces from the propeller are tonal at the blade passing frequency and are transmitted to the hull through the stern end cone. The hull is modelled as a fluid loaded cylindrical shell with ring stiffeners and two equally spaced bulkheads. The cylinder is closed by end-plates and conical end caps. The actuators are arranged in circumferential arrays and attached to the prow end cone. Both Active Vibration Control and Active Structural Acoustic Control are analysed. The inertial actuators can provide control forces with a magnitude large enough to reduce the sound radiated by the vibrations of the hull in some frequency ranges.  相似文献   

8.
Extensive measurements were made of the radiated noise of M/V OVERSEAS HARRIETTE, a bulk cargo ship (length 173 m, displacement 25 515 tons) powered by a direct-drive low-speed diesel engine-a design representative of many modern merchant ships. The radiated noise data show high-level tonal frequencies from the ship's service diesel generator, main engine firing rate, and blade rate harmonics due to propeller cavitation. Radiated noise directionality measurements indicate that the radiation is generally dipole in form at lower frequencies, as expected. There are some departures from this pattern that may indicate hull interactions. Blade rate source level (174 dB re 1 microPa/m at 9 Hz, 16 knots) agrees reasonably well with a model of fundamental blade rate radiation previously reported by Gray and Greeley, but agreement for blade rate harmonics is not as good. Noise from merchant ships elevates the natural ambient by 20-30 dB in many areas; the effects of this noise on the biological environment have not been widely investigated.  相似文献   

9.
肖斌 《声学学报》2013,38(3):346-353
为分离舰船壳体结构非线性系统的结构噪声,考虑其非线性及响应谱特征,将其理想成纯输入非线性系统,采用Volterra级数模型计算其广义频响函数,获得非线性频谱特征,提出非线性系统噪声源分析策略,并进行数值仿真和试验研究,其结果表明:非线性频谱特征合理存在;提出的非线性系统噪声源分析策略合理有效,可实现系统激励源和广义频响函数的参数估计。非线性频谱特征及提出的非线性系统噪声源分析策略,为深入开展舰船壳体结构噪声的非线性特征识别及其特征谱分离研究提供基础。   相似文献   

10.
The underwater counter-rotation propeller non-cavitation noise has an obvious modulation characteristic which is due to the interaction of flow and blade. A modulation mechanism is presented in this paper. A sound pressure spectrum model is presented to describe its non-cavitation noise with application of generalized acoustic analogy method, the modulation mechanism is expressed with the improvement of sound pressure model. The power spectrum and modulation spectrum are presented by numerical simulation. Theoretical analysis and numerical simulation results are verified by the cavitation tunnel experiment. The modulation model of counter-rotation propeller is beneficial to the prediction modulation characteristics and identification of underwater high-speed vehicles.  相似文献   

11.
水下对转桨无空化噪声调制理论分析与试验研究   总被引:2,自引:0,他引:2       下载免费PDF全文
曾赛  杜选民  范威 《声学学报》2017,42(6):641-651
水下对转桨无空化噪声由流场-桨叶相互作用引起,调制特性是水下对转桨无空化噪声的重要特征,本文研究了水下对转桨无空化辐射噪声调制机理。首先利用广义声类比方法得到了无空化条件下水下对转桨的远场声压谱,建立了水下对转桨无空化噪声的调制模型,然后数值仿真了模型对转桨无空化噪声的功率谱和调制谱,最后在空泡水筒中进行了模型对转桨的无空化噪声测量试验,数值仿真结果和试验验证了调制模型的准确性。该模型对于水下对转桨无空化噪声调制特性预报及目标识别具有重要价值.   相似文献   

12.
I.IntroductionInthecourseofnavigation,shipsinevitablyproducevariouskindsofnoiseradiation,whichbringusimportantinformation.Ononehand,manyresearchersdevotethemselvestothestudyofthetime-frequency-amplitudedomaincharacteristicsoftheshipnoiseradiationfield,whichistheregularmethodforstudyingthenoiseradiation,i.e.,thedirectproblem.ontheotherhand,theyareworkinghardatmakinguseofthelloiseradiationtoinferthestateofshipnavigationandtheconditionofthemainaPparatusonboard,etc.,andthisistheinverseproblemofthe…  相似文献   

13.
采用空化多相流瞬态模拟和边界元数值声学计算相结合的混合方法,预报了全附体假尾后对转桨在初生空化状态下的线谱和宽带谱噪声,分析了初生空化状态下对转桨噪声谱级相对于无空化状态的增量,提出了同时从流场与声场角度判定对转桨空化初生的四个充分条件。预报值与空泡水筒噪声测量值进行了比较。多相流瞬态模拟包括非定常雷诺时均模拟、尺度适应模拟和分离涡模拟三种方法。计算结果表明,在大范围进速系数范围内预报对转桨敞水性能曲线与测量值吻合很好。尺度适应模拟(SAS)和分离涡模拟(DES)在捕捉对转桨空化脉动压力时精度相当,均能满足非定常负载噪声预报的精度要求;雷诺时均模拟(URAN S)仅对于低频负载噪声来说基本适用。空泡体积脉动诱导线谱噪声在800 Hz处的预报误差小于4 dB;在800 Hz^3 kHz频段内,预报得到1/3oct中心频率处谱级的平均误差小于1.5 dB,总声级预报误差小于2.4 dB。空化初生的充分条件为:空化面积与桨盘面面积的比值小于2%、积分力和叶梢截面压力系数分布较无空化状态基本不变且中高频段噪声谱级增加8~10 dB。较好地解决了伴流场中对转桨空化初生判定和初生空化状态下辐射噪声预报的两个技术难题,可直接服务于高速、低噪声鱼雷的设计研发。   相似文献   

14.
王顺杰  程玉胜 《应用声学》2012,31(6):438-444
水下高速目标对转螺旋桨常工作在空化状态,其噪声线谱由前后桨相互作用及前后桨与船舶尾流场的相互作用引起。通过Goldstein的声相似方程,将空泡看作螺旋桨的一部分,对空化条件下水下对转螺旋桨的线谱频率进行了理论预报。推导出了远场条件下单极子源性质的声源所产生的声压表达式,得到了其线谱预报频率。对实测水下高速目标进行了线谱预报,通过比较发现预报值与实测线谱频率具有较高的吻合度。  相似文献   

15.
船尾伴流场-导管-螺旋桨互作用噪声预报研究   总被引:8,自引:0,他引:8  
研究了导管螺旋桨低频离散谱噪声辐射机理和预报方法。依据线性声学原理,导管螺旋桨噪声场为螺旋桨直接辐射噪声与导管散射噪声之和,并利用速度势面元法分析流场,得到导管螺旋桨非定常力,将其作为FW-H方程的源项,求解得到螺旋桨直接辐射声。导管散射声通过Kirchoff积分方程求解获得。由于导管桨的导管是短导管,其算例分析计算表明,低频情况下导管散射声级远小于螺旋桨直接辐射声级。并将导管螺旋桨离散谱噪声级与测量所得的实桨离散谱噪声级进行了比较,证实导管螺旋桨离散谱噪声理论预报结果能够较合理的反映实桨离散谱噪声的量值。   相似文献   

16.
赵亚林  路达  王绿  申晨  杨彬  陈玉  杨坤德 《应用声学》2022,41(6):938-947
针对高压换流站内交流滤波器组相干噪声源的声功率难以确定的问题,该文提出了一种基于几何声学理论的声功率反演方法。该方法采用可同时考虑噪声源强度和相位的几何声学理论建立相干声场模型,在此基础上构建声功率反演模型,通过寻找使声学模型输出和实测数据差异最小的声源参数(强度和相位),实现了对相干噪声源声功率的反演。数值仿真和实验数据验证了该方法的有效性。  相似文献   

17.
The inflow ahead of a rotating propeller attached to a container ship model was visualized using a two-frame particle image velocimetry (PIV) technique. For illuminating the inflow region, a transparent window was installed at the stern of the ship model. Ensemble-averaged mean velocity fields were measured at four different blade phases under the design loading condition. The characteristics of the inflow in the upper plane above the propeller axis are quite different from those below the propeller axis. In the far upstream region above the propeller axis, most of the inflow comes from the hull wake and the axial velocity is very small. As the inflow moves toward the propeller plane, its axial velocity component increases rapidly. In addition, the variation of the inflow characteristics with respect to phase angle becomes apparent. The thick hull boundary layer and out-of-plane motion resulting from the propeller rotation produce a large turbulent kinetic energy around the tip of the propeller blade in the upper inflow region. The axial velocity distribution of the propeller inflow is asymmetric with respect to the vertical center axis, exhibiting different axial velocities on the port and starboard sides.  相似文献   

18.
曾赛  杜选民  范威 《应用声学》2020,39(3):482-491
水下对转螺旋桨流致辐射噪声的预报对于水下目标的特征提取和分类识别具有重要意义。由桨叶的旋转引起的湍流场是水下对转螺旋桨流致辐射噪声的源场。分述了水下对转螺旋桨湍流边界层脉动、旋转干涉效应和空化效应引发的水动力噪声机制和研究进展,比较了目前工程应用中的3种对转螺旋桨流致辐射噪声预报方法的特点。在分析对转螺旋桨流致辐射噪声数值预报难点的基础上,综述了对转螺旋桨流致辐射噪声计算方法的研究进展,指出间接数值模拟方法是工程中进行对转螺旋桨流致辐射噪声预报的有效方法。  相似文献   

19.
An important cause of sound radiation from a submarine in the low frequency range is fluctuating forces at the propeller. The forces are transmitted to the hull via the shaft and the fluid. Sound radiation occurs due to hull and propeller vibrations as well as dipole sound radiation caused by the operation of the propeller in a non-uniform wake. In order to minimise sound radiation caused by propeller forces, a hydraulic vibration attenuation device known as a resonance changer can be implemented in the propeller/shafting system. In this work, cost functions that represent the overall radiated sound power are investigated, where the virtual stiffness, damping and mass of the resonance changer were chosen as design parameters. The minima of the cost functions are found by applying gradient based optimisation techniques. The finite element and boundary element methods are used to model the structure and the fluid, respectively. The adjoint operator is employed to calculate the sensitivity of the cost function to the design parameters. The influence of sound radiation due to propeller vibration on the optimisation of the resonance changer as well as the influence of the reduction in amplitude for higher harmonics of the blade-passing frequency on the control performance is investigated.  相似文献   

20.
噪声抵消法估计和抑制声呐部位主要自噪声   总被引:2,自引:1,他引:1  
本文采用修正格型过滤自适应噪声抵消方法,成功地抑制艇艄声呐部位自噪声中的螺旋桨噪声成分等,抑制效果达40dB以上。所采用的经改进后的LSL算法收敛速度快,精度高,具有宽带抑噪性能。利用上述噪声抵消系统(软件)分析、判别了各噪声源对艇艏声呐部位声场的贡献,在确定主要噪声源方面,获得比较满意的结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号