首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cheng Hu 《声与振动》2019,53(5):199-206
Taking the complex mechanical systems as the research project, a theoretical multi-degree-of-freedom (MDOF) model was established. Based on the vibration characteristics analysis of this system, a novel method of vibration mitigation was proposed, which can be applied to most of the complex mechanical systems. Through this method, limited grounding stiffness was made use of and added to certain degree of freedom (DOF) discretely. Thus, the root-meansquare (RMS) of the systems amplitude can be reduced to ideal level. The MATLAB code based on this method was attached, which was tested on the theoretical model. Consider that complex mechanical systems are nonlinear and uncertain, theoretically the optimal solution of vibration mitigation is inaccessible. However, this method can always provide a relatively effective solution.  相似文献   

2.
The Proper Orthogonal Decomposition (POD) method is a tool well adapted to analyze vector signals whereas Continuous Gabor Transform (CGT) is suitable for scalar signal with multi-frequency components. In this paper, a method named Sliding Window Proper Orthogonal Decomposition (SWPOD) combining POD and CGT to analyze Multi-Degrees-Of-Freedom (MDOF) vibration system responses is presented. SWPOD gives access to the evolution of the coherent spacial structures and their frequency components versus time. The method is of principal interest in the case of swept-sine excitation of linear or nonlinear systems to access the resonance frequencies, mode shapes and modal damping ratios. A procedure is proposed to extract the linear and nonlinear normal modes of weakly damped MDOF mechanical systems and illustrated using numerical examples.  相似文献   

3.
The problem of obtaining the underlying linear dynamic compliance matrix in the presence of nonlinearities in a general multi-degree-of-freedom (MDOF) system can be solved using the conditioned reverse path (CRP) method introduced by Richards and Singh (1998 Journal of Sound and Vibration, 213(4): pp. 673–708). The CRP method also provides a means of identifying the coefficients of any nonlinear terms which can be specified a priori in the candidate equations of motion. Although the CRP has proved extremely useful in the context of nonlinear system identification, it has a number of small issues associated with it. One of these issues is the fact that the nonlinear coefficients are actually returned in the form of spectra which need to be averaged over frequency in order to generate parameter estimates. The parameter spectra are typically polluted by artefacts from the identification of the underlying linear system which manifest themselves at the resonance and anti-resonance frequencies. A further problem is associated with the fact that the parameter estimates are extracted in a recursive fashion which leads to an accumulation of errors. The first minor objective of this paper is to suggest ways to alleviate these problems without major modification to the algorithm. The results are demonstrated on numerically-simulated responses from MDOF systems. In the second part of the paper, a more radical suggestion is made, to replace the conditioned spectral analysis (which is the basis of the CRP method) with an alternative time domain decorrelation method. The suggested approach – the orthogonalised reverse path (ORP) method – is illustrated here using data from simulated single-degree-of-freedom (SDOF) and MDOF systems.  相似文献   

4.
This paper presents an iterative procedure for determining the natural frequencies and mode shapes of vibration of single-junction branched systems that enables large order systems of this class to be solved. The method is based on the Holzer table but with the modification that the junction rotor is considered as the residual torque rotor, and the vibration amplitude of the residual rotor is always normalized to unity. A consequence of this form of normalization is that the Rayleigh-Kohn and Newton-Raphson iterative techniques become identical, and this identification enables the natural frequencies of the system to be determined in any order by a simple iterative formula. The method is illustrated by application to a typical marine system.  相似文献   

5.
Different types of actuating and sensing mechanisms are used in new micro and nanoscale devices. Therefore, a new challenge is modeling electromechanical systems that use these mechanisms. In this paper, free vibration of a magnetoelectroelastic (MEE) microbeam is investigated in order to obtain its natural frequencies and buckling loads. The beam is simply supported at both ends. External electric and magnetic potentials are applied to the beam. By using the Hamilton's principle, the governing equations and boundary conditions are derived based on the Euler–Bernoulli beam theory. The equations are solved, analytically to obtain the natural frequencies of the MEE microbeam. Furthermore, the effects of external electric and magnetic potentials on the buckling of the beam are analyzed and the critical values of the potentials are obtained. Finally, a numerical study is conducted. It is found that the natural frequency can be tuned directly by changing the magnetic and electric potentials. Additionally, a closed form solution for the normalized natural frequency is derived, and buckling loads are calculated in a numerical example.  相似文献   

6.
The literature regarding the free vibration analysis of single-span beams carrying a number of spring-mass systems is plenty, but that of multi-span beams carrying multiple spring-mass systems is fewer. Thus, this paper aims at determining the “exact” solutions for the natural frequencies and mode shapes of a uniform multi-span beam carrying multiple spring-mass systems. Firstly, the coefficient matrices for an intermediate pinned support, an intermediate spring-mass system, left-end support and right-end support of a uniform beam are derived. Next, the numerical assembly technique for the conventional finite element method is used to establish the overall coefficient matrix for the whole vibrating system. Finally, equating the last overall coefficient matrix to zero one determines the natural frequencies of the vibrating system and substituting the corresponding values of integration constants into the related eigenfunctions one determines the associated mode shapes. In this paper, the natural frequencies and associated mode shapes of the vibrating system are obtained directly from the differential equation of motion of the continuous beam and no other assumptions are made, thus, the last solutions are the exact ones. The effects of attached spring-mass systems on the free vibration characteristics of the 1-4-span beams are studied.  相似文献   

7.
A nonlocal Euler–Bernoulli elastic beam model is developed for the vibration and instability of tubular micro- and nano-beams conveying fluid using the theory of nonlocal elasticity. Based on the Newtonian method, the equation of motion is derived, in which the effect of small length scale is incorporated. With this nonlocal beam model, the natural frequencies and critical flow velocities for the case of simply supported system and for the case of cantilevered system are obtained. The effect of small length scale (i.e., the nonlocal parameter) on the properties of vibrations is discussed. It is demonstrated that the natural frequencies are generally decreased with increasing values of nonlocal parameter, both for the supported and cantilevered systems. More significantly, the effect of small length scale on the critical flow velocities is visible for fluid-conveying beams with nano-scale length; however, this effect may be neglected for micro-beams conveying fluid.  相似文献   

8.
A theoretical study of two types of continuous systems with a general form of compliant boundary conditions is presented. The systems considered are elastic beams and circular plates with elastic damped edge constraints. Beam studies are restricted to those with identical boundary conditions at each end. The method of solution consists of formulating the edge condition of the system in terms of the impedance of the compliant boundary material and of using classical solution techniques to solve the equations of motion. The result of matching the boundary conditions of the system with constraining conditions is the system frequency equation in terms of the constraint impedances.A discussion is presented giving the influence of the compliant material on the vibration of the structure. The models give numerically the effect of elasticity and damping of the supports on the resonant frequencies of the systems. Parameters are obtained which indicate when one may assume simply supported or clamped boundaries for the actual case of elastic damped constraints without introducing large errors in the natural frequencies.  相似文献   

9.
Plate elements are used in many engineering applications. In-plane loads and deformations have significant influence on the vibration characteristics of plate elements. Numerous methods have been developed to quantify the effects of in-plane loads and deformations of individual plate elements with different boundary conditions based on their natural frequencies. However, these developments cannot be applied to the plate elements in a structural system as the natural frequency is a global parameter for the entire structure. This highlights the need for a method to quantify in-plane deformations of plate elements in structural framing systems. Motivated by this gap in knowledge, this research has developed a comprehensive vibration based procedure to quantify in-plane deformation of plate elements in a structural framing system. This procedure with its unique capabilities to capture the influence of load migration, boundary conditions and different tributary areas is presented herein and illustrated through examples.  相似文献   

10.
The governing differential equations for the coupled bending-bending vibration of a rotating beam with a tip mass, arbitrary pretwist, an elastically restrained root, and rotating at a constant angular velocity, are derived by using Hamilton's principle. The frequency equation of the system is derived and expressed in terms of the transition matrix of the transformed vector characteristic governing equation. The influence of the tip mass, the rotary inertia of the tip mass, the rotating speed, the geometric parameter of the cross-section of the beam, the setting angle, and the pretwist parameters on the natural frequencies are investigated. The difference between the effects of the setting angle on the natural frequencies of pretwisted and unpretwisted beams is revealed.  相似文献   

11.
In this paper, free transversal vibrations of a systems of two annular and circular membranes connected by a Winkler elastic layer are studied using analytical methods and numerical simulation. At first the motion of each system is described by two homogeneous partial differential equations. The general solutions of the free vibrations are derived by the Bernoulli-Fourier method and the boundary problems are solved. The natural frequencies and natural mode shapes of vibrations of systems under consideration are determined. The investigation of free vibrations prove that the double-membrane systems execute two kinds of vibrations, synchronous and asynchronous. Then for each system two models formulated by using finite element representations are prepared. The FE models are manually tuned to reduce the difference between the natural frequencies of the analytical solutions and the natural frequencies of the FE model calculations, respectively.  相似文献   

12.
A nonlocal Euler–Bernoulli elastic beam model is developed for the vibration and instability of tubular micro- and nano-beams conveying fluid using the theory of nonlocal elasticity. Based on the Newtonian method, the equation of motion is derived, in which the effect of small length scale is incorporated. With this nonlocal beam model, the natural frequencies and critical flow velocities for the case of simply supported system and for the case of cantilevered system are obtained. The effect of small length scale (i.e., the nonlocal parameter) on the properties of vibrations is discussed. It is demonstrated that the natural frequencies are generally decreased with increasing values of nonlocal parameter, both for the supported and cantilevered systems. More significantly, the effect of small length scale on the critical flow velocities is visible for fluid-conveying beams with nano-scale length; however, this effect may be neglected for micro-beams conveying fluid.  相似文献   

13.
The subject of this paper is the development of a general solution procedure for the vibrations (primary resonance and nonlinear natural frequency) of systems with cubic nonlinearities, subjected to nonlinear and time-dependent internal boundary conditions—this is a commonly occurring situation in the vibration analysis of continuous systems with intermediate elements. The equations of motion form a set of nonlinear partial differential equations with nonlinear, time-dependent, and coupled internal boundary conditions. The method of multiple timescales, an approximate analytical method, is applied directly to each partial differential equation of motion as well as coupled boundary conditions (i.e. on each sub-domain and the corresponding internal boundary conditions for a continuous system with intermediate elements) which ultimately leads to approximate analytical expressions for the frequency-response relation and nonlinear natural frequencies of the system. These closed-form solutions provide direct insight into the relationship between the system parameters and vibration characteristics of the system. Moreover, the suggested solution procedure is applied to a sample problem which is discussed in detail.  相似文献   

14.
The problem considered is the buckling or vibration of a system of n columns, or n general structures, which are suitably related to each other and are connected together by sets of springs, or inextensible beams, which are also suitably related to each other. It is shown that all the critical loads, natural frequencies and modes which are required in buckling and vibration problems can be found from n substitute systems which each consist of one column or structure and a single set of springs. The derivation of these substitute systems involves the solution of a very simple linear eigenvalue problem of order n, which has closed form solutions for several of the special cases considered. The reduction of the original system to n substitute systems has been adapted to permit the use of design procedures which avoid a complete analysis of each trial design.  相似文献   

15.
In the present paper, natural frequencies and stability of a spinning polar orthotropic disk subjected to a stationary concentrated transverse load are investigated. The analysis of the free vibration of a spinning disk is performed first to find natural frequencies and corresponding vibration modes. The resulting eigenfunctions obtained from the free vibration are used as deflection functions of the forced vibration of a disk where the load is modelled as a mass-spring-dashpot system fixed in space. By using the Galerkin approximation method, eigenvalues of the whole system are determined. Results show that disks with higher values of modulus ratios or the Poisson ratios have higher natural frequencies, and the stability of the whole system can be improved by raising the value of the modulus ratio or lowering that of the Poisson ratio.  相似文献   

16.
A study is presented of the changes in the characteristics of the natural modes of vibration for multistorey structures which are founded on flexible foundations. First a standard eigenvalue problem is formulated for the proportionally damped case. Then general relationships of changes in natural frequencies and mode shapes are derived for the linear vibration theory. By means of an example problem it is demonstrated, however, that only the first mode obeys the predicted changes of frequencies and mode shapes over a wide range of foundation stiffness. The higher modes are shown to deviate substantially from the linear behaviour. This deviation is ascribed to geometric changes in mode shapes.  相似文献   

17.
Y.Y. Lee 《Applied Acoustics》2002,63(11):1157-1175
The nonlinear natural frequency of a rectangular box, which consists of one flexible plate and five rigid plates, is studied in this paper. The flexible plate is assumed to vibrate like a simple piston. The behavior of the structural-acoustic coupling between the flexible plate and the air cavity is analyzed by using the proposed finite element modal method. The system finite element equation is reduced and expressed in terms of the modal coordinates with small degrees of freedom by using the proposed reduction method. The system nonlinear stiffness matrix representing the large amplitude vibration can be transformed to be a constant modal matrix. The natural frequencies are determined by using the harmonic balance method to solve the eigenvalue equations of the structural-acoustic system. The effect of the cavity depth on the natural frequencies and convergence studies are discussed in detail.  相似文献   

18.
Galerkin methods for natural frequencies of high-speed axially moving beams   总被引:1,自引:0,他引:1  
In this paper, natural frequencies of planar vibration of axially moving beams are numerically investigated in the supercritical ranges. In the supercritical transport speed regime, the straight equilibrium configuration becomes unstable and bifurcate in multiple equilibrium positions. The governing equations of coupled planar is reduced to two nonlinear models of transverse vibration. For motion about each bifurcated solution, those nonlinear equations are cast in the standard form of continuous gyroscopic systems by introducing a coordinate transform. The natural frequencies are investigated for the beams via the Galerkin method to truncate the corresponding governing equations without nonlinear parts into an infinite set of ordinary-differential equations under the simple support boundary. Numerical results indicate that the nonlinear coefficient has little effects on the natural frequency, and the three models predict qualitatively the same tendencies of the natural frequencies with the changing parameters and the integro-partial-differential equation yields results quantitatively closer to those of the coupled equations.  相似文献   

19.
张永康  鲍四元 《应用声学》2024,43(2):330-338
本文使用微分方程解析法求解变截面梁固有频率。首先,建立变截面梁模型,其中截面面积和惯性矩均按幂次函数变化。得到变截面梁自由振动时挠度的解析表达式,并获得不同边界条件下梁弯曲振动的固有频率方程。其中惯性矩所对应幂指数与截面面积的幂指数的差值为4时,可得自振频率方程的精确形式;而幂指数差值不等于4时,给出近似解法。其次,对4种具体的变截面梁求解不同边界下的自振频率,并与瑞利-里兹法所得的自振频率解比较。验证精确解法结果的正确性,并发现近似解法结果的相对偏差在5%以内。该解析方法较瑞利-里兹法具有能快速求解的特点,且易于分析截面参数对梁固有频率的影响。由算例可得,边界和其他参数不变时,梁的同阶次无量纲自振频率随着幂次指数的增加而增加。几何参数中仅截面形状参数改变时,随着形状参数的增加,梁的同阶次无量纲自振频率随之减小,但固定-自由梁的第一阶自振频率除外。  相似文献   

20.
Exact solutions for the free and forced torsional vibration of branched systems are obtained in terms of the modal parameters of the branches. The basic technique consists of first isolating the branches by clamping the system at the junction. The conditions necessary for the relaxation of the clamp are then obtained from the response of the system to a displacement excitation at the clamp. The vibration of branched engine installations in which repeated branch natural frequencies sometimes occur are given special attention. It is shown that the technique may be applied to the solution of the vibration problems of certain types of flexural systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号