首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Linear thermal buckling and free vibration analysis are presented for functionally graded cylindrical shells with clamped-clamped boundary condition based on temperature-dependent material properties. The material properties of functionally graded materials (FGM) shell are assumed to vary smoothly and continuously across the thickness. With high-temperature specified on the inner surface of the FGM shell and outer surface at ambient temperature, 1D heat conduction equation along the thickness of the shell is applied to determine the temperature distribution; thereby, the material properties based on temperature distribution are made available for thermal buckling and free vibration analysis. First-order shear deformation theory along with Fourier series expansion of the displacement variables in the circumferential direction are used to model the FGM shell. Numerical studies involved the understanding of the influence of the power-law index, r/h and l/r ratios on the critical buckling temperature. Free vibration studies of FGM shells under elevated temperature show that the fall in natural frequency is very drastic for the mode corresponding to the lowest natural frequency when compared to the lowest buckling temperature mode.  相似文献   

2.
This paper presents analytical studies on the vibro-acoustic and sound transmission loss characteristics of functionally graded material (FGM) plates using a simple first-order shear deformation theory. The material properties of the plate are assumed to vary according to power law distribution of the constituent materials in terms of volume fraction. The sound radiation due to sinusoidally varying point load, uniformly distributed load and obliquely incident sound wave is computed by solving the Rayleigh integral with a primitive numerical scheme. Displacement, velocity, acceleration, radiated sound power level, radiated sound pressure level and radiation efficiency of FGM plate for varying power law index are examined. The sound transmission loss of the FGM plate for several incidence angles and varying power law index is studied in detail. It has been found that, for the plate being considered, the sound power level increases monotonically with increase in power law index at lower frequency range (0–500 Hz) and a non-monotonic trend is appeared towards higher frequencies for both point and distributed force excitations. Increased vibration and acoustic response is observed for ceramic-rich FGM plate at higher frequency band; whereas a similar trend is seen for metal-rich FGM plate at lower frequency band. The dBA values are found to be decreasing with increase in power law index. The radiation efficiency of ceramic-rich FGM plate is noticed to be higher than that of metal and metal-rich FGM plates. The transmission loss below the first resonance frequency is high for ceramic-rich FGM plate and low for metal-rich FGM plate and further depends on the specific material property. The study has found that increased transmission loss can be achieved at higher frequencies with metal-rich FGM plates.  相似文献   

3.
Here, the dynamic thermal buckling behavior of functionally graded spherical caps is studied considering geometric nonlinearity based on von Karman's assumptions. The formulation is based on first-order shear deformation theory and it includes the in-plane and rotary inertia effects. The material properties are graded in the thickness direction according to the power-law distribution in terms of volume fractions of the material constituents. The effective material properties are evaluated using homogenization method. The governing equations obtained using finite element approach are solved employing the Newmark's integration technique coupled with a modified Newton–Raphson iteration scheme. The pressure load corresponding to a sudden jump in the maximum average displacement in the time history of the shell structure is taken as the dynamic buckling load. The present model is validated against the available isotropic case. A detailed numerical study is carried out to highlight the influences of shell geometries, power law index of functional graded material and boundary conditions on the dynamic buckling load of shallow spherical shells.  相似文献   

4.
In the present work, the study of the nonlinear vibration of a functionally graded cylindrical shell subjected to axial and transverse mechanical loads is presented. Material properties are graded in the thickness direction of the shell according to a simple power law distribution in terms of volume fractions of the material constituents. Governing equations are derived using improved Donnell shell theory ignoring the shallowness of cylindrical shells and kinematic nonlinearity is taken into consideration. One-term approximate solution is assumed to satisfy simply supported boundary conditions. The Galerkin method, the Volmir's assumption and fourth-order Runge–Kutta method are used for dynamical analysis of shells to give explicit expressions of natural frequencies, nonlinear frequency–amplitude relation and nonlinear dynamic responses. Numerical results show the effects of characteristics of functionally graded materials, pre-loaded axial compression and dimensional ratios on the dynamical behavior of shells. The proposed results are validated by comparing with those in the literature.  相似文献   

5.
This paper presents the stability of two-dimensional functionally graded (2D-FG) cylindrical shells subjected to combined external pressure and axial compression loads, based on classical shell theory. The material properties of functionally graded cylindrical shell are graded in two directional (radial and axial) and determined by the rule of mixture. The Euler's equation is employed to derive the stability equations, which are solved by GDQ method to obtain the critical mechanical buckling loads of the 2D-FG cylindrical shells. The effects of shell geometry, the mechanical properties distribution in radial and axial direction on the critical buckling load are studied and compared with a cylindrical shell made of 1D-FGM. The numerical results reveal that the 2D-FGM has a significant effect on the critical buckling load.  相似文献   

6.
A numerical method is proposed for analyzing transient waves in cylindrical shells of a functionally graded material (FGM) excited by impact point loads. In the present method, the FGM shell is divided into layer elements with three nodal lines along the wall thickness. The material property within each element is assumed to vary linearly in the thickness direction, which represents the spatial variation of material property of FGM. This can further reduce the number of elements to obtain more accurate results effectively. The Hamilton principle is used to develop approximate dynamic equilibrium equations. The displacement response is determined by employing the Fourier transformation and the modal analysis. As examples, the displacement responses of FGM shells excited by point loads are calculated, and the characteristics of waves in FGM shells are discussed. The computations have shown the efficiency of the present method.  相似文献   

7.
The stability behavior of the Leipholz's type of laminated box columns with nonsymmetric lay-ups resting on elastic foundation is investigated using the finite element method. Based on the kinematic assumptions consistent with the Vlasov beam theory, a formal engineering approach of the mechanics of the laminated box columns with symmetric and nonsymmetric lay-ups is presented. The extended Hamilton's principle is employed to obtain the elastic stiffness and mass matrices, the Rayleigh damping and elastic foundation matrices, the geometric stiffness matrix due to distributed axial force, and the load correction stiffness matrix accounting for the uniformly distributed nonconservative forces. The evaluation procedures for the critical values of divergence and flutter loads with/without internal and external damping effects are briefly presented. Numerical examples are carried out to validate the present theory with respect to the previously published results. Especially, the influences of the fiber angle change and damping on the divergence and flutter loads of the laminated box columns are parametrically investigated.  相似文献   

8.
In this paper, the Ritz minimum energy method, based on the use of the Principle of Virtual Displacements (PVD), is combined with refined Equivalent Single Layer (ESL) and Zig Zag (ZZ) shell models hierarchically generated by exploiting the use of Carrera's Unified Formulation (CUF), in order to engender the Hierarchical Trigonometric Ritz Formulation (HTRF). The HTRF is then employed to carry out the free vibration analysis of doubly curved shallow and deep functionally graded material (FGM) shells. The PVD is further used in conjunction with the Gauss theorem to derive the governing differential equations and related natural boundary conditions. Donnell–Mushtari's shallow shell-type equations are given as a particular case. Doubly curved FGM shells and doubly curved sandwich shells made up of isotropic face sheets and FGM core are investigated. The proposed shell models are widely assessed by comparison with the literature results. Two benchmarks are provided and the effects of significant parameters such as stacking sequence, boundary conditions, length-to-thickness ratio, radius-to-length ratio and volume fraction index on the circular frequency parameters and modal displacements are discussed.  相似文献   

9.
In the present study, the stability of a cantilever column resting on an elastic foundation under the action of a uniformly distributed tangential load is discussed. A Winkler type elastic foundation is considered. Moreover, the effect of a lumped mass located in an arbitrary position on the stability of the system when the column is subjected to a partially distributed follower force is investigated. The equations of motion are obtained using the extended Hamilton's principle and the influences of the lumped mass and applied load are included in the equations using the generalized functions theories. Applying the Ritz technique, the resulting equations are transformed into a general eigenvalue problem. The effects of several design parameters such as foundation elastic modulus, ratio of the lumped mass to the column's mass, position of the lumped mass and the distribution model of the follower force are examined. The validity of the present analysis is confirmed by comparing the results with those obtained in literature and excellent agreement is observed. The numerical results reveal that the load distribution length and model have significant effects on the flutter boundaries of the system.  相似文献   

10.
The analysis of thermoelastic deformations of a simply supported functionally graded material (FGM) sandwich plates subjected to a time harmonic sinusoidal temperature field on the top surface and varying through-the-thickness is illustrated in this paper. The FGM sandwich plates are assumed to be made of three layers and resting on Pasternak's elastic foundations. The volume fractions of the constituents of the upper and lower layers and, hence, the effective material properties of them are assumed to vary in the thickness direction only whereas the core layer is still homogeneous. When in-plane sinusoidal variations of the displacements and the temperature that identically satisfy the boundary conditions at the edges, the governing equations of motion are solved analytically by using various shear deformation theories as well as the classical one. The influences of the time parameter, power law index, temperature exponent, top-to-bottom surface temperature ratio, side-to-thickness ratio and the foundation parameters on the dynamic bending are investigated.  相似文献   

11.
A comprehensive dynamic model of a rotating hub–functionally graded material (FGM) beam system is developed based on a rigid–flexible coupled dynamics theory to study its free vibration characteristics. The rigid–flexible coupled dynamic equations of the system are derived using the method of assumed modes and Lagrange's equations of the second kind. The dynamic stiffening effect of the rotating hub–FGM beam system is captured by a second-order coupling term that represents longitudinal shrinking of the beam caused by the transverse displacement. The natural frequencies and mode shapes of the system with the chordwise bending and stretching (B–S) coupling effect are calculated and compared with those with the coupling effect neglected. When the B–S coupling effect is included, interesting frequency veering and mode shift phenomena are observed. A two-mode model is introduced to accurately predict the most obvious frequency veering behavior between two adjacent modes associated with a chordwise bending and a stretching mode. The critical veering angular velocities of the FGM beam that are analytically determined from the two-mode model are in excellent agreement with those from the comprehensive dynamic model. The effects of material inhomogeneity and graded properties of FGM beams on their dynamic characteristics are investigated. The comprehensive dynamic model developed here can be used in graded material design of FGM beams for achieving specified dynamic characteristics.  相似文献   

12.
A detailed study is undertaken to analyze the two-dimensional transient fluid-structure interaction of a plane acoustic pressure pulse with an arbitrarily thick, isotropic, functionally graded, hollow cylinder of infinite length, submerged in and filled with non-viscous compressible fluids. A laminate approximate model is adopted to deal with the assumed power-law variation of the constituents’ volume fractions across the thickness of the inhomogeneous cylinder. The problem solution is obtained by employing the classical method of modal expansion in conjunction with the powerful Transfer matrix solution technique and Durbin’s numerical Laplace inversion algorithm. Detailed numerical examples for the transient responses of water-filled and submerged thick-walled TiC-Al FGM cylinders with ceramic or metal rich material compositional gradient profiles under wideband and narrowband Gaussian incident shock loadings are presented and discussed. Many of the interesting dynamic features in the transient shell-shock interaction are addressed through appropriate plots of the internal/external pressure field as well as the induced dynamic stress concentrations within the shell material. Also, the response curves for the FGM cylinders are compared with those of equivalent bi-laminate shells containing comparable total volume fractions of constituent materials. A limiting case is considered and the validity of the work is established by comparison with the data obtained with the aid of a commercial finite element package.  相似文献   

13.
The characteristics of beam-mode stability of fluid-conveying shell systems are investigated in this paper for shells with clamped-free (cantilevered) boundary conditions. An FEM algorithm is developed to conduct the investigation. A periodic shell structure of functionally graded material (FGM), termed as PFGM shell here, is designed so as to enhance the stability for the shell system, and to eliminate the stress concentration problems that exist in periodic structures. Results show that by the introduction of periodic design the critical velocities can be raised over several desired ranges of the dimensionless fluid density β, and the stress concentration is effectively reduced in the PFGM shell. Finally, the effects of the geometric shape, material parameters and spring supports on the dynamical stability are probed.  相似文献   

14.
15.
This paper focuses on the dynamic behavior of functionally graded conical, cylindrical shells and annular plates. The last two structures are obtained as special cases of the conical shell formulation. The first-order shear deformation theory (FSDT) is used to analyze the above moderately thick structural elements. The treatment is developed within the theory of linear elasticity, when materials are assumed to be isotropic and inhomogeneous through the thickness direction. The two-constituent functionally graded shell consists of ceramic and metal that are graded through the thickness, from one surface of the shell to the other. Two different power-law distributions are considered for the ceramic volume fraction. The homogeneous isotropic material is inferred as a special case of functionally graded materials (FGM). The governing equations of motion, expressed as functions of five kinematic parameters, are discretized by means of the generalized differential quadrature (GDQ) method. The discretization of the system leads to a standard linear eigenvalue problem, where two independent variables are involved without using the Fourier modal expansion methodology. For the homogeneous isotropic special case, numerical solutions are compared with the ones obtained using commercial programs such as Abaqus, Ansys, Nastran, Straus, Pro/Mechanica. Very good agreement is observed. Furthermore, the convergence rate of natural frequencies is shown to be very fast and the stability of the numerical methodology is very good. Different typologies of non-uniform grid point distributions are considered. Finally, for the functionally graded material case numerical results illustrate the influence of the power-law exponent and of the power-law distribution choice on the mechanical behavior of shell structures.  相似文献   

16.
An analysis is presented for the vibration and stability of a non-uniform Timoshenko beam subjected to a tangential follower force distributed over the center line by use of the transfer matrix approach. For this purpose, the governing equations of a beam are written in a coupled set of first-order differential equations by using the transfer matrix of the beam. Once the matrix has been determined by numerical integration of the equations, the eigenvalues of vibration and the critical flutter loads are obtained. The method is applied to beams with linearly, parabolically and exponentially varying depths, subjected to a concentrated, uniformly distributed or linearly distributed follower force, and the natural frequencies and flutter loads are calculated numerically, from which the effects of the varying cross-section, slenderness ration, follower force and the stiffness of the supports on them are studied.  相似文献   

17.
The main aim of this paper is to provide a simple yet efficient solution for the free vibration analysis of functionally graded (FG) conical shells and annular plates. A solution approach based on Haar wavelet is introduced and the first-order shear deformation shell theory is adopted to formulate the theoretical model. The material properties of the shells are assumed to vary continuously in the thickness direction according to general four-parameter power-law distributions in terms of volume fractions of the constituents. The separation of variables is first performed; then Haar wavelet discretization is applied with respect to the axial direction and Fourier series is assumed with respect to the circumferential direction. The constants appearing from the integrating process are determined by boundary conditions, and thus the partial differential equations are transformed into algebraic equations. Then natural frequencies of the FG shells are obtained by solving algebraic equations. Accuracy and reliability of the current method are validated by comparing the present results with the existing solutions. Effects of some geometrical and material parameters on the natural frequencies of shells are discussed and some selected mode shapes are given for illustrative purposes. It’s found that accurate frequencies can be obtained by using a small number of collocation points and boundary conditions can be easily achieved. The advantages of this current solution method consist in its simplicity, fast convergence and excellent accuracy.  相似文献   

18.
The three-dimensional transient analysis of functionally graded annular plates with arbitrary boundary conditions is carried out in this paper. The material properties of the FGM plate are assumed to vary smoothly in an exponential law along the thickness direction. The plate is assumed to rest on a two parameter viscoelastic foundation. A semi-analytical method, which integrates the state space method (SSM), Laplace transform and its inversion, as well as the one-dimensional differential quadrature method (DQM), is proposed to obtain the transient response of the plate. The state space method is used to obtain the analytical solution in the thickness direction. The differential quadrature method is employed to approximate the solution in the radial direction. The Laplace transform and the numerical inversion are used to obtain the solution in time domain. Numerical results show a good agreement between the response histories obtained by the present method and finite element method. The effects of the boundary conditions at the edges, the material graded index, the Winkler and shearing layer elastic coefficients, and the damping coefficient are studied. Numerical examples show that the peak response decreases as the material graded index, the Winkler and shearing layer elastic coefficients, and the damping coefficient increase. The results obtained in this paper can serve as benchmark data in further research.  相似文献   

19.
A periodic shell made of functionally graded material (FGM) is proposed in this Letter. Wave propagation and vibration transmission in the FGM periodic shell for different circumferential modes are investigated. By illustrating the dynamical behavior of the periodic FGM shell within the pass/stop band frequency ranges, the mechanism of wave propagation and vibration transmission in the shell are illuminated. Moreover, the suppression characteristics of structure-borne sound in the internal field of the shell, either within the stop or pass band frequency ranges, are studied.  相似文献   

20.
Nonlinear vibrations of functionally graded doubly curved shallow shells   总被引:1,自引:0,他引:1  
Nonlinear forced vibrations of FGM doubly curved shallow shells with a rectangular base are investigated. Donnell’s nonlinear shallow-shell theory is used and the shell is assumed to be simply supported with movable edges. The equations of motion are reduced using the Galerkin method to a system of infinite nonlinear ordinary differential equations with quadratic and cubic nonlinearities. Using the multiple scales method, primary and subharmonic resonance responses of FGM shells are fully discussed and the effect of volume fraction exponent on the internal resonance conditions, softening/hardening behavior and bifurcations of the shallow shell when the excitation frequency is (i) near the fundamental frequency and (ii) near two times the fundamental frequency is shown. Moreover, using a code based on arclength continuation method, a bifurcation analysis is carried out for a special case with two-to-one internal resonance between the first and second doubly symmetric modes with respect to the panel’s center (ω13≈2ω11). Bifurcation diagrams and Poincaré maps are obtained through direct time integration of the equations of motion and chaotic regions are shown by calculating Lyapunov exponents and Lyapunov dimension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号