首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Emulsifier-free latexes with immobilized carbohydrate residues have been prepared by batch or seed (co)polymerization of styrene in the presence of 11-(N-p-vinylbenzyl)amido undecanoyl maltobionamide (LIMA). The critical micelle concentration and the molecular surface area of LIMA were determined by surface tension and fluorescence measurements. Batch polymerization of LIMA with styrene was first performed using potassium persulfate, proving the efficiency of LIMA as emulsifier. Seed copolymerization was then investigated using polystyrene seed particles with varying experimental conditions (especially the LIMA surface coverage). Material balance of LIMA between aqueous phase and particles was obtained by separating both phases by ultracentrifugation and it was found that the surfaceactive monomer is preferentially on or in the particle (nearly 100% in batch and at most 70% in seed copolymerization). The presence of the carbohydrate residues at the particle surface was directly evidenced by 1H-nuclear magnetic resonance, electron spectroscopy for chemical analysis and electrophoretic mobility.  相似文献   

2.
A novel route to make crosslinked polystyrene (CPS) microspheres to be porphyrin‐functionalized via two special polymer reactions, Kornblum reaction and Adler reaction, was designed and founded. The chloromethyl groups of chloromethylated crosslinked polystyrene (CMCPS) microspheres were first oxidized to aldehyde groups by dimethyl sulfoxide as oxidant via Kornblum oxidation reaction, obtaining aldehyde group‐modified microspheres, ALCPS microspheres, in which, a great quantity of benzaldehyde groups suspend from the main chain, and the effects of the main factors including the reaction temperature, the addition of KI as catalyst and the used amount of NaHCO3 as acid acceptor on the oxidation reaction were examined. Subsequently, the synchronic synthesizing and immobilizing of porphyrins on CPS microspheres were carried out via the Adler reaction between solid and liquid phases, in which, ALCPS microspheres, pyrrole and benzaldehyde or benzaldehyde analog in a solution were used as co‐reactants, resulting in porphyrin‐functionalized microspheres, and the influence of diverse factors including the acidity of the protonic acid catalyst, the substituent structure of benzaldehyde analog, and the polarity of the solvent as well as the swelling property of the solvent for CPS microspheres on the process of synchronously synthesizing and immobilizing porphyrins on CPS microspheres were investigated in depth. The experimental results indicate that via the designed route, the porphyrin‐functionalization of CPS microspheres can successfully be realized. For the Kornblum oxidation reaction, under the optimal reaction conditions, the conversion of chloromethyl groups can reach 90%. For the Adler reaction between solid and liquid phases, the fitting protonic acid catalyst is lactic acid, appropriate solvent is a mixture of dimethyl sulfoxide and xylene, and using 4‐chlorobenzaldehyde as a benzaldehyde analog reactant in the solution is in favor of the porphyrin‐functionalization of CPS microspheres. Under these specific conditions, the immobilized amount of porphyrin can get up to 23.33 mmol/100 g. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Driven by the market demand, several synthetic and natural grafts have been proposed during the last years for tendons regeneration. The synthetic grafts, which present a better mechanical performance than the natural ones, usually fail due to the lack of biocompatibility and bioactivity. Thus, chitosan (Cs) was immobilized on polypropylene (PP) surface, previously activated by plasma treatment, in order to improve the fibroblasts' adhesion and proliferation on it. The Orange II dye method and FTIR-ATR analysis proved the successful Cs immobilization on the PP surface. It was observed by SEM and optical profilometry analysis that the Cs concentration increase leads to a surface roughness (Ra value) increase, as well as to water contact angle (C.A.) decrease at least until 2% (w/V) of Cs. Using the 2% (V/V) Cs solution concentration, according to SEM analysis and resazurin assay, the developed functionalization was well succeeded in improving fibroblasts adhesion and proliferation on PP substrates surface over 7 days of culture.  相似文献   

4.
《中国化学会会志》2018,65(2):231-242
A stable and biocompatible targeting complex CFNs@PEG‐FA is developed. The initially synthesized cobalt ferrite nanoparticles (CFNs) were treated with poly(ethylene glycol) (PEG) in order to improve biocompatibility of the CFNs. Citric acid (CA) was used as the coupling agent, which made PEG to bond with the CFNs. CFNs@PEG were conjugated with folic acid (FA) to synthesize CFNs@PEG‐FA, which was capable of targeting the FA receptor positive (FAR+) cancer cells. Synthesized nanoparticles were physically and chemically analyzed using EDX, FT‐IR, XRD, TGA, FESEM, TEM, DLS, and VSM. The biocompatibility of CFNs@PEG‐FA was assessed in vitro on HSF 1184 (human skin fibroblast cells) and HeLa (human cervical cancer cell, FAR+) using MTT assay and AO/EB staining florescence method. High level of CFNs@PEG‐FA binding to HeLa was confirmed through quantitative and qualitative in vitro targeting studies. Results show that CFNs@PEG‐FA can be a potential biomaterial for use in biomedical trials, especially magnetic hyperthermia. The findings through this in vitro study are to be compared in future with those of in vivo studies.  相似文献   

5.
张晓  杨蓉  王琛  衡成林 《物理化学学报》2012,28(6):1520-1524
采用改进的Hummers方法制备了纳米尺度的氧化石墨烯.对氧化石墨烯的表面进行羧基化,并连接上聚乙二醇(PEG)使其在细胞培养液中可溶并能稳定保存.采用透射电镜(TEM)、傅里叶变换红外(FTIR)光谱和zeta电位测量等对修饰后的氧化石墨烯的结构和功能进行了表征.体外细胞实验表明PEG修饰的氧化石墨烯在水中具有良好的可溶性,对A549细胞没有明显的毒性,在生物医药领域具有潜在的应用价值.  相似文献   

6.
The surface design used for improving biocompatibility is one of the most important issues for the fabrication of medical devices.For mimicking the ideal surface structure of cell outer membrane,a large number of polymers bearing phosphorylcholine(PC) groups have been employed to modify the surfaces of biomaterials and medical devices.It has been demonstrated that the biocompatibility of the modified materials whose surface is required to interact with a living organism has been obviously improved by introducing PC groups.In this review,the fabrication strategies of cell outer membrane mimetic surfaces and their resulted biocompatibilities were summarized.  相似文献   

7.
Due to the opposite surface charge of TiO(2) and silver nano-particles, at around neutral pH, it is expected that the interaction between these particles and cross-linkable polysiloxane (XPs) resin and thus their final properties would be affected by their processing technique. This paper has focused on the effect of processing design on the interaction, surface orientation and final properties of surface nano-colloidal functionalization. The results disclosed the key role of the applied process on the properties of the treated fabrics which have been well discussed through the modeling of this effect on orientations of nanoparticles on the surface. The developed models are interestingly verified by various characterizations. Applying a premixed TiO(2)/XPs colloid as an after treatment on Ag treated samples caused more enhanced stain photo-degradability and UV protection properties, while the reduction of enhanced hydrophobicity, washing durability, and stain-repellency were observed as compared to applying Ag/XPs premixed colloid on TiO(2). The role of processing on XPs stabilizing efficiency and its co-photo-catalytic function on TiO(2) nanoparticles has been concluded and deeply discussed. The appropriate processing design can be tailored in order to accomplish desirable hydrophilicity/hydrophobicity with a granted bioactivity. The results reveal that ideal bioactivity, stain photo-degradability, self-cleaning, UV protection, anti-staining properties, and washing durability can be achieved by applying a mixture of silver and XPs as an after-treatment on TiO(2) treated fabrics.  相似文献   

8.
This study aims at preparing water soluble aspartic acid (ASP) modified CdTe quantum dots with tunable fluorescence emission controlled by reaction time. The size of the synthesized CdTe quantum dots was evaluated using transmission electron microscope (TEM) and also calculated based on their UV-vis spectra. The optical properties of TGA-CdTe quantum dots were characterized by UV-vis and fluorescence (FL) spectroscopy. The red-shift in the UV-vis absorption and FL emission with the increase of reaction time was observed. The biocompatibility examination indicated that the ASP modified CdTe QDs had low cytotoxicity.  相似文献   

9.
We have evaluated five bioconjugation chemistries for immobilizing DNA onto silicon substrates for microfluidic biosensing applications. Conjugation by organosilanes is compared with linkage by carbonyldiimidazole (CDI) activation of silanol groups and utilization of dendrimers. Chemistries were compared in terms of immobilization and hybridization density, stability under microfluidic flow-induced shear stress, and stability after extended storage in aqueous solutions. Conjugation by dendrimer tether provided the greatest hybridization efficiency; however, conjugation by aminosilane treated with glutaraldehyde yielded the greatest immobilization and hybridization densities, as well as enhanced stability to both shear stress and extended storage in an aqueous environment. Direct linkage by CDI activation provided sufficient immobilization and hybridization density and represents a novel DNA bioconjugation strategy. Although these chemistries were evaluated for use in microfluidic biosensors, the results provide meaningful insight to a number of nanobiotechnology applications for which microfluidic devices require surface biofunctionalization, for example vascular prostheses and implanted devices. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
Quantum dots are a group of inorganic nanomaterials exhibiting exceptional optical and electronic properties which impart distinct advantages over traditional fluorescent organic dyes in terms of tunable broad excitation and narrow emission spectra, signal brightness, high quantum yield and photo-stability. Aqueous solubility and surface functionalization are the most common problems for QDs employed in biological research. This review addresses the recent research progress made to improve aqueous solubility, functionalization of biomolecules to QD surface and the poorly understood chemistry involved in the steps of bio-functionalization of such nanoparticles.  相似文献   

11.
Polystyrene was directly azidated in 1,2‐dichloroethane or chlorobenzene using a combination of trimethylsilyl azide and a hypervalent iodine (III) compound, (diacetoxyiodo)benzene. 2D NMR HMBC experiments indicated that the azide groups were attached to the polymer backbone and also possibly to the aromatic pendant groups. The amount of introduced azide groups was estimated by semi‐quantitative IR spectroscopy and elemental analysis. Approximately 1 in every 11 styrene units could be modified by using a ratio of hypervalent iodine compound to trimethylsilyl azide to styrene units of 1:2.1:1 at 0 °C for 4 h followed by heating to 50 °C for 2 h in chlorobenzene. The azidated polymers were further used as backbone precursors in the synthesis of polymeric brushes with hydrophilic side chains via a copper‐catalyzed click grafting‐onto reaction with poly(ethylene oxide) monomethyl ether 4‐pentynoate. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 966–974, 2010  相似文献   

12.
Resorbable porous scaffold discs and solid films were prepared from poly[(1,5-dioxepan-2-one)-co-(L-lactide)] and poly[(epsilon-caprolactone)-co-(L-lactide)]. The surfaces of the scaffolds were functionalized to increase their hydrophilicity. A total of 90 samples were prepared to cover all important combinations of experimental and material factors, and all experimental data were fitted by a partial least square model. As a result of grafting, the porous discs and solid films exhibited a tremendous increase in wettability. The functionalized discs were hygroscopic so that water was instantly absorbed and thoroughly wet the substrates.  相似文献   

13.
In this work, we report the size tunable synthesis of water-dispersed gold nanoparticles by using octadecylamine (ODA) as the reducing agent, that electrostatically complexes with the chloroaurate ions, reduces them, and subsequently caps the gold nanoparticles. Amine-capped gold nanoparticles, thus formed, were subsequently coordinated with a secondary monolayer of an anionic surfactant, sodium bis(2-ethylhexyl)-sulfosuccinate (AOT) which helps in providing sufficient hydrophilicity to the gold nanoparticles. Functionalized gold nanoparticles were characterized by UV-vis, IR spectrophotometric, dynamic light scattering, zeta-potential and transmission electron microscopic techniques, which demonstrated high stability of gold nanoparticles in aqueous media, indicating stabilization via bilayers of ODA and AOT. The gold nanoparticles were further conjugated with a protein (bovine serum albumin) and the interaction was investigated by circular dichroism studies as well as by measuring the fluorescence quenching of the tryptophan residues of protein molecules after the binding of nanoparticles to specific sites of the protein. The binding constant and the stoichiometry values indicated that the particles with larger core size are less site-specific but show higher binding affinity with protein molecules. The use of a bio-compatible synthetic process and the stabilization of the gold nanoparticles by ODA and AOT are interesting from the point of view of making bioprobes for life science applications.  相似文献   

14.
纳米金刚石是一种新型的碳纳米粒子,具有硬度高、化学稳定、良好的生物相容性和热传导性等优点,有广阔的应用前景。对于纳米金刚石的应用,大多需要对其进行表面修饰。本文主要结合近年来国内外研究成果,阐述了氢化、羧酸化、羟基化及其他表面修饰等纳米金刚石的表面修饰方法,总结了纳米金刚石在润滑、抛光、生物医学、复合材料等领域的应用。  相似文献   

15.
Postfunctionalization of high‐molecular‐weight syndiotactic polystyrene (sPS) was achieved via combination of electrophilic bromination at the para‐position of the polymer aromatic ring and subsequent Suzuki–Miyaura cross‐coupling reactions with functionalized phenylboronic acids. The concentration of brominated styrene repeating unit in sPS was conveniently controlled by changing the ratio of added bromine relative to the polymer repeating unit. Brominated sPS (8.5 mol %) was converted quantitatively to other polar functional groups via Suzuki–Miyaura cross‐coupling reactions with various functional group‐substituted phenylboronic acids. The surface properties of functionalized sPS were studied by measuring water contact angles. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 4335–4343, 2010  相似文献   

16.
 The sulfonation of polystyrene (PS) films with 50 and 96% sulfuric acid as a function of time is presented. In contrast to previous literature reports, we showed that the treatment of PS films even with dilute sulfuric acid yields sulfonated surfaces after reaction times of 30 s–1 h. The hydrophilicity of the modified PS increased considerably in comparison to the unreacted PS films. X-ray photoelectron spectroscopy yielded evidence for the sulfonation of PS at the surface. Unreacted spin-coated PS films were very smooth, while modified PS showed some clumps dispersed on a flat surface, as analyzed by atomic force microscopy. The surface morphology was identified as a phase-separated system composed of domains of unreacted PS and a matrix of sulfonated PS by fluorescence microscopy using the positively charged dye rhodamine B. The adsorption of the polycation diallyldimethylammonium chloride on the sulfonated PS surface could be detected. The thickness of the adsorbed polycation was 2.2 nm. Received: 3 November 1998 Accepted in revised form: 23 February 1999  相似文献   

17.
Microfluidics based on the capillarity-induced filling of elastomeric channels by a suitable liquid or solution represents a useful route for realizing portable diagnostic devices designed without additional mechanical or electrical micropumps. In this study, an elastomeric mold made of poly(dimethylsiloxane) (PDMS), containing relief patterns placed in intimate contact with a silicon substrate, is utilized to create a continuous network of rectangular micro-channels for the motion of water fluid. The immobilization on activated PDMS surface of suitable functional molecules such as hydrophilic and hydrophobic fluorine-containing aminonaphthols, obtained through a straightforward and versatile synthetic procedure, allowed us to modulate PDMS surface properties depending on the structural characteristics of the employed derivative. In this context, the incorporation of fluorine groups is important for improving biocompatibility of the resulting device, providing surfaces that could be chemically and biologically inert as well as resistant to surface adhesion phenomena. The functionalization from liquid phase of PDMS replicas, involving a covalent derivatization via silanization reaction of the above mentioned compounds to an oxidized PDMS surface, resulted in a successful modification of microfluidic motion of water in rectangular capillaries, moreover contact angle values evidence also how wettability of PDMS films could be modulated, with the fluorinated aminonaphthols fuctionalized PDMS exhibiting higher contact angles.  相似文献   

18.
The response of host organism in macroscopic, cellular and protein levels to biomaterials is, in most cases, closely associated with the materials’ surface properties. In tissue engineering, regenerative medicine and many other biomedical fields, surface engineering of the bio-inert synthetic polymers is often required to introduce bioactive species that can promote cell adhesion, proliferation, viability and enhanced ECM-secretion functions. Up to present, a large number of surface engineering techniques for improving biocompatibility have been well established, the work of which generally contains three main steps: (1) surface modification of the polymeric materials; (2) chemical and physical characterizations; and (3) biocompatibility assessment through cell culture. This review focuses on the principles and practices of surface engineering of biomedical polymers with regards to particular aspects depending on the authors’ research background and opinions. The review starts with an introduction of principles in designing polymeric biomaterial surfaces, followed by introduction of surface modification techniques to improve hydrophilicity, to introduce reactive functional groups and to immobilize functional protein molecules. The chemical and physical characterizations of the modified biomaterials are then discussed with emphasis on several important issues such as surface functional group density, functional layer thickness, protein surface density and bioactivity. Three most commonly used surface composition characterization techniques, i.e. ATR-FTIR, XPS, SIMS, are compared in terms of their penetration depth. Ellipsometry, CD, EPR, SPR and QCM's principles and applications in analyzing surface proteins are introduced. Finally discussed are frequently applied methods and their principles to evaluate biocompatibility of biomaterials via cell culture. In this section, current techniques and their developments to measure cell adhesion, proliferation, morphology, viability, migration and gene expression are reviewed.  相似文献   

19.
Electrochemical reduction of carbon dioxide has been attracting extensive interest due to its fundamental significance both in environmental protection and in energy storage. In this review, recent progress in the manipulation of the catalytic activity and selectivity of various transition metals towards CO2 reduction reaction (CO2RR) is summarized within the context of deliberate surface functionalization by select organic ligands. This is primarily manifested in three effects, interfacial charge transfer, suppression of hydrogen evolution, and stabilization of key reaction intermediates. The review is concluded with a perspective of the challenges and promises in the structural engineering of metal catalysts for enhanced CO2RR performance.  相似文献   

20.
In this work, we developed a surface functionalization way of silica monoliths with a rapid, simple, versatile, and localizable photografting step. The elaboration of a photoreactive layer at the surface of monoliths was first optimized. The functionalization with [γ‐(methacryloyloxy)propyl]trimethoxysilane at 80°C in a hydro‐organic solution containing triethylamine as catalyst allows reachng the highest density of methacrylate photoactive moieties on silica surfaces. These methacrylate reactive surfaces were subsequently photografted within few minutes with acrylate monomers bearing alkyl chains (C12 and C18). The photografting efficiency was determined by monitoring the retentive properties of monoliths in the RP mode. The retention factors are of the same order of magnitude as highly retentive columns obtained by modification of silica surface with long‐alkyl chain silanes or by thermal polymerization of long‐alkyl chain monomers. It was also verified that such grafting neither impaired the efficiency of the monolithic stationary phase (Hmin = 6–8 μm in nano‐LC) nor its permeability (about 6 × 10?14 m2). Further, it was also demonstrated that photografting is localizable in nonmasked defined areas. Results obtained in anion‐exchange chromatography after photopolymerization of [2‐(methacryloyloxy)ethyl]trimethylammonium chloride are presented as well to demonstrate the versatility of the developed approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号