首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 698 毫秒
1.
Al-N co-doped ZnO (ZnO:Al-N) thin films were grown on n-Si (1 0 0) substrate by RF co-sputtering technique. As-grown ZnO:Al-N film exhibited n-type conductivity whereas on annealing in Ar ambient the conduction of ZnO:Al-N film changes to p-type, typically at 600 °C the high hole concentration of ZnO:Al-N co-doped film was found to be 2.86 × 1019 cm−3 and a low resistivity of 1.85 × 10−2 Ω-cm. The current-voltage characteristics of the obtained p-ZnO:Al-N/n-Si heterojunction showed good diode like rectifying behavior. Room temperature photoluminescence spectra of annealed co-doped films revealed a dominant peak at 3.24 eV.  相似文献   

2.
The nano-TiO2 electrode with a p-n homojunction device was designed and fabricated by coating of the Fe3+-doped TiO2 (p-type) film on top of the nano-TiO2 (n-type) film. These films were prepared from synthesized sol-gel TiO2 samples which were verified as anatase with nano-size particles. The semiconductor characteristics of the p-type and n-type films were demonstrated by current-voltage (I-V) measurements. Results show that the rectifying curves of undoped TiO2 and Fe3+-doped TiO2 sample films were observed from the I-V data illustration for both the n-type and p-type films. In addition, the shapes of the rectifying curves were influenced by the fabrication conditions of the sample films, such as the doping concentration of the metal ions, and thermal treatments. Moreover, the p-n homojunction films heating at different temperatures were produced and analyzed by the I-V measurements. From the I-V data analysis, the rectifying current of this p-n junction diode has a 10 mA order higher than the current of the n-type film. The p-n homojunction TiO2 electrode demonstrated greater performance of electronic properties than the n-type TiO2 electrode.  相似文献   

3.
The electrical characteristics of Au/n-Si (1 0 0) Schottky rectifier have been studied in a wide irradiation fluence range using conventional current-voltage (I-V) and capacitance-voltage (C-V) measurements. The I-V characteristics showed an abnormal increase in forward current at low voltage. The device shows a bend in forward I-V and reverses bias C-V characteristics due to extra current, suggesting that there are two independent contributions to thermionic current, corresponding to two levels of the Schottky barrier. It is shown that the excess current at low voltage can be explained by taking into account the role of heavy ion irradiation induced defects at the metal semiconductor interface.  相似文献   

4.
Negative differential resistance (NDR) has been observed for individual 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) molecules on Si(1 1 1) in ultra high vacuum (UHV) scanning tunneling microscopy (STM) and spectroscopy (STS) measurements at room temperature. NDR effects were observed exclusively at negative bias voltage using an n-type Si(1 1 1) sample. At 77 K no NDR effects were observed, but the I(V) curves were similar in shape to those recorded on bare Si(1 1 1) sites. TEMPO was observed to adsorb preferentially at corner adatom sites of the Si(1 1 1)-7 × 7 structure. Although the Si(1 1 1)-7 × 7 reconstruction was conserved, local defects were frequently observed in the vicinity of the TEMPO adsorbates.  相似文献   

5.
Wu and Tong proposed the calculation method of Patterson function obtained directly from the LEED I-V curves which shows the relative position of surface atoms as an image. We have made the calculation program of Patterson function and applied to the structural analysis of the Si(1 1 1)1 × 1-Fe surface. Surface structure was able to be expressed almost correctly by the Patterson function obtained from the theoretical I-V curves for the model structure. In the Patterson function obtained from the experimental I-V curves, the locational relation between the atoms of subsurface layer was in agreement with the CsCl type structure. More over, because the faint peak, by which we can distinguish the model, can be seen, it seems that the model B8 is preferable to the model A8. This result is consistent with the model shown by Walter et al.  相似文献   

6.
In this paper, we proposed a new p-type ZnO doping method with metal organic chemical vapor deposition (MOCVD) technology by inserting a GaAs interlayer between substrate and ZnO epitaxial layer. The doping concentration of p-type ZnO film is able to be controlled by adjusting the thickness of the GaAs interlayer. With this method, we fabricated n-ZnO/p-ZnO:As homojunction light-emitting diode (LED) on ITO-glass substrate pre-coated with 20 nm GaAs interlayer. The device exhibits a typical rectifying behavior by current-voltage (I-V) measurement. When the device is forward biased, UV-vis electroluminescence (EL) emissions can be observed clearly.  相似文献   

7.
By careful selection of chloride ion concentration in aqueous sodium chloride, electrochemical oxidation of α phase brass is shown to permit fabrication of either p-type copper (I) oxide/metal or n-type zinc oxide/metal Schottky barrier diodes. X-ray photoelectron and Auger electron spectroscopies provide evidence that barrier formation and rectifying qualities depend on the relative surface abundance of copper (I) oxide and zinc oxide. X-ray diffraction of the resulting diodes shows polycrystalline oxides embedded in amorphous oxidation products that have a lower relative abundance than the diode forming oxide. Conventional I/V characteristics of these diodes show good rectifying qualities. When neither of the oxides dominate, the semiconductor/metal junction displays an absence of rectification.  相似文献   

8.
Chemical vapor deposition-based sulfur passivation using hydrogen sulfide is carried out on both n-type and p-type Si(100) wafers. Al contacts are fabricated on sulfur-passivated Si(100) wafers and the resultant Schottky barriers are characterized with current–voltage (IV), capacitance–voltage (CV) and activation-energy methods. Al/S-passivated n-type Si(100) junctions exhibit ohmic behavior with a barrier height of <0.078 eV by the IV method and significantly lower than 0.08 eV by the activation-energy method. For Al/S-passivated p-type Si(100) junctions, the barrier height is ~0.77 eV by IV and activation-energy methods and 1.14 eV by the CV method. The discrepancy between CV and other methods is explained by image force-induced barrier lowering and edge-leakage current. The IV behavior of an Al/S-passivated p-type Si(100) junction remains largely unchanged after 300 °C annealing in air. It is also discovered that heating the S-passivated Si(100) wafer before Al deposition significantly improves the thermal stability of an Al/S-passivated n-type Si(100) junction to 500 °C.  相似文献   

9.
The microstructural properties of the MgxZn1−xO/Si(1 0 0) interface were investigated using transmission electron microscopy (TEM) and chemical states of the heterostructure were studied by high resolution X-ray photoelectron spectroscopy (XPS). By analyzing the valence band spectra of thin MgxZn1−xO/Si(1 0 0) heterostructures, the valence band offset between such Mg0.55Zn0.45O and Si(1 0 0) was obtained to be 2.3 eV. Using the cubic ternary thin films as insulators, metal-insulator-semiconductor (MIS) capacitors have been fabricated. Leakage current density lower than 3 × 10−7 A/cm2 is obtained under the electrical field of 600 kV/cm by current-voltage (I-V) measurement. Frenkel-Poole conduction mechanism is the main cause of current leakage under high electrical field.  相似文献   

10.
Effectiveness of a Ge fraction modulated spacer in hole resonant tunneling diodes (RTDs) with Si/strained Si1−xGex heterostructures epitaxially grown on Si(1 0 0) was investigated to improve the electrical characteristics at higher temperatures. Electrical characteristics measured for 30 RTDs, with the modulated spacer at higher Ge fraction (x = 0.48) on a single wafer, show that the deviation of the peak current and voltage at the resonant peak falls in ranges of ±25% and ±10%, respectively. For the RTDs, negative differential conductance (NDC) characteristics are obtained even at higher temperatures around 230 K than that for the RTDs with x = 0.42. The result indicates that the introduction of higher Ge fraction is effective for NDC in RTD at higher temperature.  相似文献   

11.
M. Krawiec  M. Kisiel 《Surface science》2006,600(8):1641-1645
The electronic structure of Si(1 1 1)-(6 × 6)Au surface covered with submonolayer amount of Pb is investigated using scanning tunneling spectroscopy. Already in small islands of Pb with thickness of 1 ML Pb(1 1 1) and with the diameter of only about 2 nm we detected the quantized electronic state with energy 0.55 eV below the Fermi level. Similarly, the I(V) characteristics made for the Si(1 1 1)-(6 × 6)Au surface reveal a localized energy state 0.3 eV below the Fermi level. These energies result from fitting of the theoretical curves to the experimental data. The calculations are based on tight binding Hubbard model. The theoretical calculations clearly show prominent modification of the I(V) curve due to variation of electronic and topographic properties of the STM tip apex.  相似文献   

12.
Electrical transport properties of Ag metal-fluorescein sodium salt (FSS) organic layer-silicon junction have been investigated. The current-voltage (I-V) characteristics of the diode show rectifying behavior consistent with a potential barrier formed at the interface. The diode indicates a non-ideal I-V behavior with an ideality factor higher than unity. The ideality factor of the Ag/FSS/p-Si diode decreases with increasing temperature and the barrier height increases with increasing temperature. The barrier height (φb=0.98 eV) obtained from the capacitance-voltage (C-V) curve is higher than barrier height (φb=0.72 eV) derived from the I-V measurements. The barrier height of the Ag/FSS/p-Si Schottky diode at the room temperature is significantly larger than that of the Ag/p-Si Schottky diode. It is evaluated that the FSS organic layer controls electrical charge transport properties of Ag/p-Si diode by excluding effects of the SiO2 residual oxides on the hybrid diode.  相似文献   

13.
The characteristics of Ni/Si(1 0 0) solid-state reaction with Al addition (Ni/Al/Si(1 0 0), Ni/Al/Ni/Si(1 0 0) and Al/Ni/Si(1 0 0)) is studied. Ni and Al films were deposited on Si(1 0 0) substrate by ion beam sputtering. The solid-state reaction between metal films and Si was performed by rapid thermal annealing. The sheet resistance of the formed silicide film was measured by four-point probe method. The X-ray diffraction (XRD) was employed to detect the phases in the silicide film. The Auger electron spectroscopy was applied to reveal the element profiles in depth. The influence of Al addition on the Schottky barrier heights of the formed silicide/Si diodes was investigated by current-voltage measurements. The experimental results show that NiSi forms even with the addition of Al, although the formation temperature correspondingly changes. It is revealed that Ni silicidation is accompanied with Al diffusion in Ni film toward the film top surface and Al is the dominant diffusion species in Ni/Al system. However, no NixAly phase is detected in the films and no significant Schottky barrier height modulation by the addition of Al is observed.  相似文献   

14.
Palladium (Pd) and cobalt (Co) Schottky barrier diodes were fabricated on n-Ge (1 0 0). The Pd-Schottky contacts were deposited by resistive evaporation while the Co-contacts were deposited by resistive evaporation and electron beam deposition. Current-voltage (I-V), capacitance-voltage (C-V) and deep level transient spectroscopy (DLTS) measurements were performed on as-deposited and annealed samples. Electrical properties of Pd and Co samples annealed between 30 and 600 °C indicate the formation of one phase of palladium germanide and two phases of cobalt germanide. No defects were observed for the resistively evaporated as-deposited Pd-and Co-Schottky contacts. A hole trap at 0.33 eV above the valence band was observed on the Pd-Schottky contacts after annealing at 300 °C. An electron trap at 0.37 eV below the conduction band and a hole trap at 0.29 eV above the valence band was observed on as-deposited Co-electron beam deposited Schottky contacts. Rutherford back scattering (RBS) technique was also used to characterise the Co-Ge, for as-deposited and annealed samples.  相似文献   

15.
The current-voltage (I-V) characteristics of Al/Rhodamine-101/p-Si/Al contacts have been measured at temperatures ranging from 280 to 400 K at 20 K intervals. A barrier height (BH) value of 0.817 eV for the Al/Rh101/p-Si/Al contact was obtained at the room temperature that is significantly larger than the value of 0.58 eV of the conventional Al/p-Si Schottky diode. While the barrier height Φb0 decreases the ideality factors (n) become larger with lowering temperature. The high values of n depending on the sample temperature may be ascribed to decrease of the exponentially increase rate in current due to space-charge injection into Rh101 thin film at higher voltage. Therefore, at all temperatures, it has been seen that the I-V characteristics show three different regions, the ohmic behavior at low voltages, and the space charge limited current with an exponential distribution of traps at high voltages.  相似文献   

16.
J. Wang  Y. Liu  M.H. Xie 《Surface science》2006,600(14):169-174
A new reconstruction of √3 × √3-R30° has been observed on a GaN film grown on a 6H-SiC (0 0 0 1)-√3 × √3 surface using RHEED and LEED experimental techniques. The experimental LEED PF shows that the GaN film is Ga-terminated hexagonal. The surface is a mixture of two structures with a single bilayer height difference between them. One is a √3 × √3-R30° reconstruction with Ga-adatoms occupying the T4 sites. Another is a Ga-terminated 1 × 1 with no extra Ga on top. The area ratio of the √3 × √3 part to the 1 × 1 part is slightly larger than 1. The first principle total energy calculations and Tensor-LEED I-V curves simulations further confirm this structure model.  相似文献   

17.
Nitrogen doped p-ZnO film, with urea as nitrogen source, is fabricated by pulsed laser deposition on well-cleaned p-type (1 0 0) Si substrates. The structural and electrical properties of the p-p heterojunction are investigated by current-voltage (I-V) and capacitance-voltage (C-V) measurements. It shows a diode-like behavior with turn-on voltage of 0.5 V. The ideality factor η determined by applying positive potential in p-ZnO and negative potential along p-Si is found to be 6. Such a high value of η is attributed to lattice mismatch between ZnO and Si. and other factors responsible are thermoionic emission, minority carrier injection and recombination. C-V results indicate an abrupt interface and a band bending of 0.9 V in the silicon. Heterojunction band diagram for p-ZnO/p-Si is proposed.  相似文献   

18.
In this paper, nitridation process of GaAs (1 0 0) substrates was studied in-situ using X-ray photoelectron spectroscopy (XPS) and ex-situ by means of electrical method I-V and photoluminescence surface state spectroscopy (PLS3) in order to determine chemical, electrical and electronic properties of the elaborated GaN/GaAs interfaces.The elaborated structures were characterised by I-V analysis. The saturation current IS, the ideality factor n, the barrier height ΦBn and the serial resistance RS are determined.The elaborated GaN/GaAs structures are also exhibited a high PL intensity at room temperature. From the computer-aided analysis of the power-dependent PL efficiency measurements (PLS3 technique), the value of the interface state density NSS(E) close to the mid-gap was estimated to be in the range of 2-4 × 1011 eV−1 cm−2, indicating a good electronic quality of the obtained interfaces.Correlation among chemical, electronic and electrical properties of the GaN/GaAs interface was discussed.  相似文献   

19.
TiN/SiNx/TiN(0 0 1) trilayers have been deposited on MgO(0 0 1) substrates using ultra-high vacuum based reactive magnetron sputtering and studied by in situ reflection high energy electron diffraction (RHEED). Depositions were carried out at 500 °C and 800 °C, with SiNx layer thicknesses between 3 and 300 Å. Here, we find that SiNx(0 0 1) layers grown at 800 °C exhibit 1 × 4 surface reconstructions along orthogonal 〈1 1 0〉 directions up to a critical thickness of ∼9 Å, where an amorphous phase forms. Growth of TiN overlayers on the reconstructed SiNx(0 0 1) layers yield RHEED patterns indicating the growth of (0 0 1)-oriented epitaxial layers with a 1 × 1 reconstruction. For the case of amorphous SiNx layers the TiN overlayers grow polycrystalline.  相似文献   

20.
Scanning tunneling microscopy luminescence (STML) was induced from the nanometer scale surfaces of cleaved n-type and p-type GaAs(1 1 0) wafers by using of an ITO-coated optical fiber probe in an ultrahigh-vacuum chamber. The STML from n-type GaAs(1 1 0) surface was induced under negative sample bias when the applied bias exceeds a threshold voltage around −1.5 V. Whereas the STML from p-type GaAs(1 1 0) surface was induced under positive sample bias when the applied bias exceeds a threshold voltage around +1.5 V. The excitation energies at the threshold voltages are consistent with the band gap of GaAs (1.42 eV) at 295 K. The typical quantum efficiencies for n-type and p-type GaAs are about 3 × 10−5 and 2 × 10−4 photons/electron, respectively. The observed STML from are attributed to a radiative recombination of electron-hole pairs generated by a hole injection for n-type GaAs under negative sample bias and an electron injection for p-type GaAs under positive sample bias, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号