首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The self-assembled (SA) films formed by gold nanoparticles on iron surface had been proved to have inhibition effect for the substrate in 0.5 M H2SO4 solutions. The inhibition action was investigated using electrochemical impedance spectroscopy (EIS). The SA films formed by gold nanoparticles protected with sodium oleate had better corrosion protection to the iron substrate than only by sodium oleate. Scanning electron microscopy (SEM) was used to observe the imagines of the SA films. In addition, it was found that the gold nanoparticles could influence the nickel electroless plating films on the iron substrate. The structure and composition of the plating films were test by electron probe microanalyzer (EPMA). The mechanisms of the formation of the SA films and the nickel electroless plating reaction were also discussed.  相似文献   

2.
A self-assembled monolayer of 2-mercaptobenzothiazole (MBT) adsorbed on the iron surface was prepared. The films were characterized by electrochemical impedance spectroscopy (EIS), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared reflection spectroscopy (FT-IR) and scanning electron microscopy (SEM). Besides, the microcalorimetry method was utilized to study the self-assembled process on iron surface and the adsorption mechanism was discussed from the power-time curve. The results indicated that MBT was able to form a film spontaneously on iron surface and the presence of it could protect iron from corrosion effectively. However, the assembling time and the concentration influence the protection efficiency. Quantum chemical calculations, according to which adsorption mechanism was discussed, could explain the experimental results to some extent.  相似文献   

3.
A facile strategy has been developed for the preparation of bimetallic gold–silver (Au–Ag) nanocomposite films by alternating absorption of poly-(ethyleneimine)–silver ions and Au onto substrates and subsequent reduction of the silver ions. The composition, micro-structure and properties of the {PEI–Ag/Au}n nanocomposite films were characterized by ultraviolet visible spectroscopy (UV–vis), transmisson electron microscopy (TEM), field emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), surface enhanced Raman scattering (SERS) and cyclic voltammetry (CV). The UV–vis characteristic absorbances of {PEI–Ag/Au}n nanocomposite thin film increase almost linear with the number of bilayers, which indicates a process of uniform assembling. Appearance of a double plasmon bands in the visible region and the lack of apparent core–shell structures in the TEM images confirm the formation of bimetallic Au–Ag nanoparticles. The result of XPS also demonstrates the existence of Ag and Au nanoparticles in the nanocomposite films. TEM and FESEM images show that these Ag and Au nanoparticles in the films possess sphere structure with the size of 20–25 nm. The resulting {PEI–Ag/Au}n films inherit the properties from both the metal Ag and Au, which exhibits a unique performance in SERS and electrocatalytic activities to the oxidation of dopamine. As a result, the {PEI–Ag/Au}n films are more attractive compared to {PEI–Ag/PSS}n and {PEI/Au}n films.  相似文献   

4.
A new modified polysiloxane, perylene-containing polysiloxane (PCP), was successfully synthesized by amine-terminated polysiloxane (ATP) and 3,4,9,10-perylene tetracarboxylic dianhydride. The synthesized compound was characterized by Fourier transform infrared spectroscopy (FT-IR) and 1H nuclear magnetic resonance (1H NMR). The thermal analysis of the PCP indicates that the modified polysiloxane has outstanding thermal stability. The PCP also possesses good fluorescence property. Due to the appearance of lone-pair electrons and π bond in PCP, it could be self-assembled on iron surface and thus used in the corrosion protection area. The PCP films were characterized by EIS (electrochemical impedance spectroscopy) and SEM (scanning electron microscopy). These results indicate that the films modified by PCP could protect the iron from corrosion efficiently.  相似文献   

5.
Hybrid nanostructures composed of gold nanoparticles (NPs) and carbon nanotubes (CNTs) have been prepared by a microwave-assisted method in the mixed solvents of oleylamine and oleic. The morphology, structure and composition of as-obtained Au/CNT composites are characterized by transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD). The composites show characteristic plasmon absorption of Au NPs in the Ultraviolet–visual spectrum. Fourier transform infrared spectrum shows the successful introduction of functional groups on the surface of CNTs, which are crucial factors to assist the nucleation in situ of Au NPs on the surface of CNTs. Electrochemical measurements show the enhancement electrochemical response for the gold electrode modified with Au/CNT composites.  相似文献   

6.
在氨基硅烷化的单晶硅片表面通过静电自组装技术组装上金和金核铂壳两种纳米粒子,通过改变基底浸泡在溶胶中的时间控制基底上纳米粒子的密度。用扫描电子显微镜(SEM)对基底表面上的形貌进行表征,结果表明纳米粒子呈亚单层二维阵列分布。以吡啶(Py)为探针分子,用波长为632.8 nm的激发光作为激发光源,研究纯金和金铂复合基底上的表面增强拉曼光谱(SERS)行为。数据显示在金纳米粒子之间引入金核铂壳纳米粒子后,Py的两个特征峰的频率没有明显变化,但谱峰的强度却变弱了,其SERS信号衰减最大可至原来的24%。这是由于引入的铂的d态电子使金的等离子体激发猝灭,从而破坏了电磁场增强,使金的SERS信号衰减。  相似文献   

7.
Gold surfaces have been modified by self-assembled techniques. Here the adsorption time of diasteroisomers (1R, 3S)-1-ferrocenyl-3-methyl-4,4-diphenyl-2,5-dioxacyclopentane and (1S, 3S)-1-ferrocenyl-3-methyl-4,4-diphenyl-2,5-dioxacyclopentane (Scheme 1, 3a and 3b) at a Au surface in ethanol solution was controlled. This study was followed by electrochemical impedance spectroscopy (EIS) and X-ray photoelectron spectroscopy (XPS) analysis. The method used for the surface modification was the control of exposure time of a Au surface in the modifier/ethanol solution. It was demonstrated by EIS and XPS that the Au surface was modified with mixture of compounds 3a + 3b, avoiding the electron transference in the interface. It was also observed that the organometallic molecule indeed had been adsorbed on the Au surface. In addition, evidence seems to conclude that the molecule-Au interaction is through the electrons of cyclopentadienyl moiety, where the oxygen atoms are near the air-molecule interface and the iron atom is near the Au surface. This type of interaction of the ferrocene derivatives with gold surfaces has not been reported by any other author.  相似文献   

8.
Aqueous colloidal suspension of iron oxide nanoparticles has been synthesized. Z-potential of iron oxide nanoparticles stabilized by citric acid was −35±3 mV. Iron oxide nanoparticles have been characterized by the light scattering method and transmission electron microscopy. The polyelectrolyte/iron oxide nanoparticle thin films with different numbers of iron oxide nanoparticle layers have been prepared on the surface of silicon substrates via the layer-by-layer assembly technique. The physical properties and chemical composition of nanocomposite thin films have been studied by atomic force microscopy, magnetic force microscopy, magnetization measurements, Raman spectroscopy. Using the analysis of experimental data it was established, that the magnetic properties of nanocomposite films depended on the number of iron oxide nanoparticle layers, the size of iron oxide nanoparticle aggregates, the distance between aggregates, and the chemical composition of iron oxide nanoparticles embedded into the nanocomposite films. The magnetic permeability of nanocomposite coatings has been calculated. The magnetic permeability values depend on the number of iron oxide nanoparticle layers in nanocomposite film.  相似文献   

9.
Blockcopolymer (BCP) lithography is an emerging nanolithography technique for fabrications of various nanoscale devices and materials. In this study, self-assembled BCP thin films having cylindrical nanoholes were prepared on gold by surface neutralization using self-assembled monolayer (SAM). Oxygen plasma treatment was investigated as a way to enhance the functionality of Au surface toward SAM formation. After surface neutralization, well-ordered nanoholes with 9 to 20 nm diameters were formed inside BCP thin films on Au surfaces through microphase separation. The effects of oxygen plasma treatment on the formation of BCP nanopattern were investigated using surface analysis techniques including X-ray photoelectron spectroscopy (XPS) and water contact angle measurement. Au nanodot arrays were fabricated on gold film by utilizing the BCP nanotemplate and investigated by atomic force microscopy (AFM).  相似文献   

10.
An electrochemical impedance immunosensor was developed for detecting the immunological interaction between human immunoglobulin (IgG) and protein A from Staphylococcus aureus based on the immobilization of human IgG on the surface of modified gold-coated magnetic nanoparticles. The nanoparticles with an Au shell and Fe oxide cores were functionalized by a self-assembled monolayer of 11-mercaptoundecanoic acid. The electrochemical analysis was conducted on the modified magnetic carbon paste electrodes with the nanoparticles. The magnetic nanoparticles were attached to the surface of the magnetic carbon paste electrodes via magnetic force. The cyclic voltammetry technique and electrochemical impedance spectroscopy measurements of the magnetic carbon paste electrodes coated with magnetic nanoparticles–human IgG complex showed changes in its alternating current (AC) response both after the modification of the surface of the electrode and the addition of protein A. The immunological interaction between human IgG on the surface of the modified magnetic carbon paste electrodes and protein A in the solution could be successfully monitored.  相似文献   

11.
Single-crystal SnS nanowires have been successfully synthesized by catalysis-assistant chemical vapor deposition. Applying Au nanoparticles which were applied on the ITO surface as the catalysator, using SnS powder and S powder as precursors and the Ar+H2 mixed atmosphere as the shielding and carrier gas, the SnS nanowires were obtained. X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS) and Raman spectroscopy were employed to characterize the as-synthesized SnS nanostructures. The room-temperature photoluminescence properties of these as-prepared SnS nanowires were presented.  相似文献   

12.
用化学还原法制备了铂金属纳米微粒 ,透射电子显微镜 (TEM)表征纳米Pt微粒的平均直径为 2 5nm。通过二硫醇将Pt纳米微粒组装到多晶金电极表面。以Fe(CN) 4- 3-6 的氧化还原作为探针反应的电化学研究表明 ,Au表面组装二硫醇后抑制了电极 /溶液界面的电子传递过程 ,而在二硫醇上再组装铂纳米微粒后 ,电子传递又可进行。运用电化学FTIR反射光谱研究了Pt纳米微粒组装电极在酸性介质中CO的吸附 ,检测到CO的线型、桥式吸附态 ,分别在 2 0 30和 184 5cm- 1 附近给出红外吸收谱峰 ,并且有增强红外效应。此外 ,还观察到Pt纳米微粒上的CO孪生吸附态。红外吸收峰位于 2 10 0cm- 1 附近。  相似文献   

13.
An amperometric phenol biosensor was constructed by using poly(glycidylmethacrylate-co-vinyl ferrocene) grafted iron oxide nanoparticles for detection of different phenolic compounds (catechol, aminophenol, phenol, p-cresol, pyrogallol). The poly(glycidylmethacrylate-co-vinyl ferrocene) and nanoparticles were characterized by Fourier transform infrared (FT-IR), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The copolymer grafted iron oxide nanoparticles and Horseradish peroxidase (HRP) were covalently attached on gold (Au) electrode surface. The effect of pH, temperature and characteristic features such as; reusability and storage stability were studied. The electrode showed good response time within ~3 s. The electrocatalytic response showed a linear dependence on the phenolic compounds concentration ranging from 0.5 to 17.0 mM.  相似文献   

14.
We observe that silver atoms deposited by thermal evaporation deposition onto n-layer graphene films condense upon annealing to form nanoparticles with an average diameter and density that is determined by the layer numbers of graphene films. The optical microscopy and Raman spectroscopy were utilized to identify the number of the graphene layers and the SEM (scanning electron microscopy) was used to observe the morphologies of the particles. Systematic analysis revealed that the average sizes of the nanoparticles increased with the number of graphene layers. The density of nanoparticles decreased as the number of graphene layers increased, revealing a large variation in the surface diffusion strength of nanoparticles on the different substrates. The mechanisms of formation of these layer-dependent morphologies of silver nanoparticles are related to the surface free energy and surface diffusion of the n-layer graphenes.  相似文献   

15.
Metallic nanoparticles (NPs) supported on oxides thin films are commonly used as model catalysts for studies of heterogeneous catalysis. Several 4d and 5d metal NPs (for example, Pd, Pt and Au) grown on alumina, ceria and titania have shown strong metal support interaction (SMSI), for instance the encapsulation of the NPs by the oxide. The SMSI plays an important role in catalysis and is very dependent on the support oxide used. The present work investigates the growth mechanism and atomic structure of Rh NPs supported on epitaxial magnetite Fe3O4(111) ultrathin films prepared on Pd(111) using the Molecular Beam Epitaxy (MBE) technique. The iron oxide and the Rh NPs were characterized using X-ray photoelectron spectroscopy (XPS), low-energy electron diffraction and photoelectron diffraction (PED). The combined XPS and PED results indicate that Rh NPs are metallic, cover approximately 20 % of the iron oxide surface and show height distribution ranging 3–5 ML (monolayers) with essentially a bulk fcc structure.  相似文献   

16.
A composite coating which could control drug release and biocorrosion of magnesium alloy stent materials WE42 was prepared. This composite coating was fabricated on the surface of the micro-arc oxidation (MAO) film of the magnesium alloy, WE42, by mixing different degrees of cross-linked gelatin with well-dispersed poly(dl-lactide-co-glycolide) (PLGA) nanoparticles. The PLGA nanoparticles were prepared by emulsion solvent evaporation/extraction technique. Nano ZS laser diffraction particle size analyzer detected that the size of the nanoparticles to be 150-300 nm. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) was used to analyze the morphology of the nanoparticles and the composite coating. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) were used to evaluate the corrosion behavior of the composite coating. Drug release was determined by ultraviolet-visible (UV-vis) spectrophotometer. The corrosion resistance of the composite coating was improved by preventing the corrosive ions from diffusing to the MAO films. The drug release rate of paclitaxel (PTX) exhibited a nearly linear sustained-release profile with no significant burst releases.  相似文献   

17.
采用传统自组装技术在硅片表面进行金银纳米粒子的复合组装.以吡啶为探针分子,利用金银在不同激发光线下增强效应的不同,研究了不同波长的激发光下纯金、银以及复合组装时体系的SERS效应.结果表明在金银同时组装时的增强效应强于金弱于银,同时还通过一系列校正以及差谱方法分离出金银共存时SERS中金的增强效应,并进行了相关分析,结果表明在金银同时组装的复合体系中,金银之间产生一定的耦合作用.  相似文献   

18.
In this work, silicon suboxide (SiOx) thin films were deposited using a RF magnetron sputtering system. A thin layer of gold (Au) with a thickness of about 10 nm was sputtered onto the surface of the deposited SiOx films prior to the thermal annealing process at 400 °C, 600 °C, 800 °C and 1000 °C. The optical and structural properties of the samples were studied using scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR) and optical transmission and reflection spectroscopy. SEM analyses demonstrated that the samples annealed at different temperatures produced different Au particle sizes and shapes. SiOx nanowires were found in the sample annealed at 1000 °C. Au particles induce the crystallinity of SiOx thin films in the post-thermal annealing process at different temperatures. These annealed samples produced silicon nanocrystallites with sizes of less than 4 nm, and the Au nanocrystallite sizes were in the range of 7-23 nm. With increased annealing temperature, the bond angle of the Si-O bond increased and the optical energy gap of the thin films decreased. The appearance of broad surface plasmon resonance absorption peaks in the region of 590-740 nm was observed due to the inclusion of Au particles in the samples. The results show that the position and intensity of the surface plasmon resonance peaks can be greatly influenced by the size, shape and distribution of Au particles.  相似文献   

19.
We have fabricated electroactive multilayer thin films containing ferritin protein cages. The multilayer thin films were prepared on a solid substrate by the alternate electrostatic adsorption of (apo)ferritin and poly(N-isopropylacrylamide-co-2-carboxyisopropylacrylamide) (NIPAAm-co-CIPAAm) in pH 3.5 acetate buffer solution. The assembly process was monitored using a quartz crystal microbalance. The (apo)ferritin/poly(NIPAAm-co-CIPAAm) multilayer thin films were then cross-linked using a water-soluble carbodiimide, 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide. The cross-linked films were stable under a variety of conditions. The surface morphology and thickness of the multilayer thin films were characterized by atomic force microscopy, and the ferritin iron cores were observed by scanning electron microscopy to confirm the assembly mechanism. Cyclic voltammetry measurements showed different electrochemical properties for the cross-linked ferritin and apoferritin multilayer thin films, and the effect of stability of the multilayer film on its electrochemical properties was also examined. Our method for constructing multilayer films containing protein cages is expected to be useful in building more complex functional inorganic nanostructures.  相似文献   

20.

Nanosized films of stabilized zirconia with Au nanoparticles formed by implanting Au ions are studied by X-ray photoelectron spectroscopy and transmission electron microscopy. The effect of irradiation of films with Au ions and postimplantation annealing on the distribution of chemical elements and zirconium- containing ZrO x compounds over the depth of the films is studied. Based on the data on the dimensional shift of the Au 4 f photoelectron line, the average value of the nanoparticle size is determined.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号