首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, water-soluble magnetite nanoparticles have been directly synthesized by thermal decomposition of iron (III) acetylacetonate, Fe(acac)3 in tri(ethyleneglycol). Size and morphology of the nanoparticles are determined by transmission electron microscopy (TEM) and dynamic light scattering (DLS) measurements while the crystal structure is identified using X-ray diffraction (XRD). Surface charge and surface coating of the nanoparticles are recognized using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectra (XPS) and zeta potential measurements. Magnetic properties are determined using vibrating sample magnetometer (VSM) and superconducting quantum interference device (SQUID) measurements. The results show that as-prepared magnetite nanoparticles are relatively monodisperse, single crystalline and superparamagnetic in nature with the blocking temperature at around 100 K. The magnetite nanoparticles are found to be highly soluble in water due to steric and electrostatic interactions between the particles arising by the surface adsorbed tri(ethyleneglycol) molecules and associated positive charges, respectively. Cytotoxicity studies on human cervical (SiHa), mouse melanoma (B16F10) and mouse primary fibroblast cells demonstrate that up to a dose of 80 μg/ml, the magnetic nanoparticles are nontoxic to the cells. Specific absorption rate (SAR) value has been calculated to be 885 and 539 W/gm for samples with the iron concentration of 1 and 0.5 mg/ml, respectively. The high SAR value upon exposure to 20 MHz radiofrequency signifies the applicability of as-prepared magnetite nanoparticles for a feasible magnetic hyperthermia treatment.  相似文献   

2.
Surface effects during plasma activation of poly(p-phenilene sulphide)—PPS have been studied. Samples that were exposed to weakly ionized highly dissociated oxygen plasma created an inductively coupled radiofrequency discharge with the power of 100 W. The electron density and temperature were measured with a double Langmuir probe and were 4 × 1015 m−3 and 3 eV, respectively, while the neutral atom density was measured with a fiber optics catalytic probe and was 4 × 1021 m−3. The surface tension was determined by measuring the contact angle of deionized water, while the appearance of surface functional groups was detected by XPS. The surface tension of untreated PPS was 7 × 10−3 N/m or/and increased to 7 × 10−2 N/m in few seconds of plasma treatment. It remained fairly constant for longer plasma treatments. The XPS survey spectrum showed little oxygen on untreated samples, but its concentration increased to about 20 at.% in few seconds. Detailed high resolution XPS C 1s peak showed that the carbon was left fairly stable during plasma treatment. The main functional groups formed were rather sulphate in sulphite groups, as determined from high resolution S 2p peak. Namely, a strong transition from sulphide to sulphate state of sulfur was observed. The spontaneous deactivation of the polymer surface was measured as well. The deactivation was fairly logarithmic with the characteristic decay time of several hours.  相似文献   

3.
Poly(lactic acid) (PLA)-grafted TiO2 particles were prepared by in situ melt polycondensation of lactic acid onto the surface of TiO2 nanoparticles. The resulting products were characterized by FTIR, XPS, TG-FTIR, XRD analysis and electron microscopy observation so as to have a better understanding of bonding between the graft polymer and nanoparticles. New characteristic peaks of Ti-carboxylic coordination bond, the changes in the relative intensities of the infrared absorption bands of graft polymer and the two decomposition stage of PLA-grafted TiO2 confirmed that PLA was grafted on the surface of TiO2 nanoparticles. By attachment of PLA, the PLA-grafted TiO2 samples exhibited much better dispersion and a slightly larger particle size than bare TiO2 particles. PLA-grafted TiO2 nanoparticles will find wide applications in biomedical and eco-friendly materials, especially as fillers in PLA matrix.  相似文献   

4.
The aim of this paper was to study the surface properties, protein adsorption and platelet adhesion behaviors of diamond-like carbon (DLC) and titanium (Ti) films. The surface energy and microstructures of these films were characterized by contact angle measurement and atomic force microscopy (AFM). A modified Coomassie brilliant blue (CBB) protein assay was used to study the amount of adsorbed proteins. Platelet adhesion was assessed by scanning electron microscopy (SEM). The AFM results show that the DLC film is smoother than Ti. Protein adsorption results from CBB protein assay show that the ratio of adsorbed albumin (Alb) to IgG (RA/I) on DLC is larger than Ti, which coincide with the sequence of the ratio of interfacial tension between solid surface and Alb (γS,Alb) to interfacial tension between surface and IgG (γS,IgG) (γS,Alb/γS,IgG). The DLC film has a preferential adsorption for Alb. The results suggest that the ratio of γS,Alb/γS,IgG may indicate an Alb/IgG affinity ratio of materials. More platelets adhere on Ti film than on DLC, which may correspond to the surface roughness of materials. The conclusion is the blood compatibility of DLC seems to be better than Ti.  相似文献   

5.
M. Teo 《Applied Surface Science》2005,252(5):1293-1304
A remote microwave-generated H2 plasma and heating to 250 °C were separately used to modify high-purity oxidized aluminum surfaces and to assess whether these treatments can help enhance adhesion with bis-1,2-(triethoxysilyl)ethane (BTSE) coatings. Different initial oxide surfaces were considered, corresponding to the native oxide and to surfaces formed by the Forest Products Laboratory (FPL) treatment applied for either 15 or 60 min. BTSE is applied from solution at pH 4, and competing processes of etching, protonation (to form OH groups) and coupling (to form AlOSi interfacial bonds) occur at the solid-liquid interface. Scanning electron microscopy (SEM) was used to determine how the topographies of the modified Al surfaces changed with the different pre-treatments and with exposure to a buffer solution of pH 4. Secondary-ion mass spectrometry (SIMS) was used to determine the direct amount of AlOSi interfacial bonds by measuring the ratio of peak intensities 71-70 amu, while X-ray photoelectron spectroscopy (XPS) was used to determine the overall strength of the silane coating adhesion by measuring the Si 2p signals before and after application of an ultrasonic rinse to the coated sample. Measured Al 2p and O 1s spectra helped assess how the different pre-treatments modified the various Al oxidized surfaces prior to BTSE coating. Pre-treated samples that showed increased AlOSi bonding after BTSE coating corresponded to surfaces, which did not show evidence of significant etching after exposure to a pH 4 environment. This suggests that such surfaces are more receptive to the coupling reaction during exposure to the BTSE coating solution. These surfaces include all H2 plasma-treated samples, the heated native oxide and the sample that only received the 15 min FPL treatment. In contrast, other surfaces that show evidence of etching in pH 4 environments are samples that received lower amounts of AlOSi interfacial bonding. Overall, heating improved the BTSE adhesive bonding for the native Al oxide, while H2 plasma treatment improved the BTSE bonding for surfaces that had initially been FPL-treated for 15 and 60 min.  相似文献   

6.
J. Kim 《Applied Surface Science》2005,252(5):1305-1312
The methods of X-ray photoelectron spectroscopy (XPS), secondary-ion mass spectrometry (SIMS), and scanning electron microscopy (SEM) have been used to investigate aspects of the bonding of bis-1,2-(triethoxysilyl)ethane (BTSE) onto anodized samples of 7075-T6 aluminum alloy that have been subjected to the various pre-treatments considered in Part I. The oxide layer thins when this sample is subjected to a Forest Products Laboratory (FPL) treatment; topographical changes are detected by SEM after only 5 min, and the “scallop structures” increase in size for longer times of the FPL treatment. These 7075-Al surfaces adsorb more BTSE than the high-purity Al samples considered in Part I, although the interfacial bonding indicated by the [AlOSi]+/[Al2O]+ SIMS ratios measured for the former samples are constant for different times of FPL treatment, unlike the situation for high-purity Al. Heating anodized 7075-Al samples, either before or after FPL treatment, has no significant effect on the subsequent BTSE adsorption, but a H2 plasma treatment can enhance the interfacial Al-O-Si bonding with a decrease in the total BTSE polymerization.  相似文献   

7.
We propose a dry method of cleaning Ge(1 0 0) surfaces based on nitrogen plasma treatment. Our in situ Auger electron spectroscopy (AES) and low-energy electron diffraction (LEED) analyses demonstrate that surface contamination remaining after wet treatment was effectively removed by nitrogen radical irradiation at low substrate temperatures. The nitrogen plasma cleaned Ge(1 0 0) surface shows a well-ordered 2 × 1 reconstruction, which indicates the formation of a contamination-free Ge(1 0 0) surface with good crystallinity. We discuss the possible reaction mechanism considering how chemisorbed carbon impurities are removed by selective C-N bond formation and subsequent thermal desorption. These findings imply the advantage of plasma nitridation of Ge surfaces for fabricating nitride gate dielectrics, in which we can expect surface pre-cleaning at the initial stage of the plasma treatment.  相似文献   

8.
Electroless deposition of copper on as-grown and amino-modification diamond substrates was investigated. The compact and uniform copper films were successfully electrolessly deposited on as-grown and amino-modification diamond substrates after activation by Pd/Sn colloid nanoparticles. The adhesion interaction between copper films and diamond substrates was roughly estimated by the ultrasonic treatment. The results showed the higher adhesion interaction between copper films and amino-modification diamond substrates than that between the copper films and as-grown diamond substrates due to the greater attractive force between the Pd/Sn colloid nanoparticles and amino-modified diamond surface. The favorable copper micropatterns were successfully constructed on diamond film surfaces by means of the catalyst lift-off method and the copper lift-off method. Furthermore, the electrochemical behavior of copper-modified boron-doped diamond (BDD) was studied for glucose oxidation in 0.2 M sodium hydroxide solution by using cyclic voltammetry, and the result indicated that copper-modified BDD exhibited high catalytic activity to electrochemical oxidation of glucose in alkaline media.  相似文献   

9.
Ni-B coatings have been deposited on the surfaces of commercial steels (SAE-1026). The depositions were carried out using the electroless plating technique employing a nickel chloride solution with borane-dimethylamine as the reducing agent. These specimens were subsequently heat treated at different temperatures (300-500 °C) and different periods of time. The obtained coating thickness was in the order of approximately 1.5 μm. X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques were used to characterize the structure and superficial morphology of the coatings. Phases like Ni, Ni3B and Ni4B3 were observed through X-ray diffraction and confirmed by differential scanning calorimeter (DSC) studies. Some of the precipitated phases have been structurally characterized. The corrosion behavior of the coated surfaces was carried out by electrochemical impedance spectroscopy (EIS) using electrolytic sodium chlorine solutions with pH 2 and 7. The EIS results showed an active corrosion mechanism in acid solution while diffusion-reaction phenomena are predominant in neutral solution.  相似文献   

10.
As-deposited antimony sulfide thin films prepared by chemical bath deposition were treated with nitrogen AC plasma and thermal annealing in nitrogen atmosphere. The as-deposited, plasma treated, and thermally annealed antimony sulfide thin films have been characterized by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy, scanning electron microscopy, atomic force microscopy, UV-vis spectroscopy, and electrical measurements. The results have shown that post-deposition treatments modify the crystalline structure, the morphology, and the optoelectronic properties of Sb2S3 thin films. X-ray diffraction studies showed that the crystallinity of the films was improved in both cases. Atomic force microscopy studies showed that the change in the film morphology depends on the post-deposition treatment used. Optical emission spectroscopy (OES) analysis revealed the plasma etching on the surface of the film, this fact was corroborated by the energy dispersive X-ray spectroscopy analysis. The optical band gap of the films (Eg) decreased after post-deposition treatments (from 2.36 to 1.75 eV) due to the improvement in the grain sizes. The electrical resistivity of the Sb2S3 thin films decreased from 108 to 106 Ω-cm after plasma treatments.  相似文献   

11.
Preparation of processed GaAs surface cleaning in view of molecular beam epitaxy regrowth by means of a O2SF6 microwave plasma has been investigated. Photoemission, Auger electron spectroscopy, atomic force microscopy and secondary ion mass spectrometry have been used for characterization. The O2SF6 plasma treatment was found to be very efficient for decontaminating the GaAs surface and leads to the formation of an oxide layer that can be taken off by a thermal or low-temperature H-plasma-assisted deoxidation. The levels of oxygen and carbon contaminants at the regrowth interface were measured to be in the range of a standard homoepitaxial layer-epiready substrate interface. Fluorine was observed to be eliminated upon deoxidation while sulphur is present, particularly in the case of low temperature grown layers. This plasma treatment was found to be efficient for preparation of processed GaAs surfaces for molecular beam epitaxial regrowth.  相似文献   

12.
To further improve surface characteristics of bio-derived compact bone scaffolds (BDCBS), 20% surface demineralization in a controlled manner was applied to the scaffolds. The surface configuration properties and roughness of the partially demineralized BDCBS and non-demineralized BDCBS (n = 12 in each group) were investigated with SEM and atomic force microscopy (AFM) in this study. The result demonstrated that the surface configuration of partially demineralized BDCBS exhibited specific porous micro-structure when compared to the compact structure of non-demineralized BDCBS. Furthermore, the result showed that the surface roughness of the partially demineralized BDCBS was significantly higher than that of BDCBS (P < 0.01). These results revealed that the partial demineralization could improve the surface configuration characteristics of BDCBS.  相似文献   

13.
A microchip made of UV transparent polymer (CYTOP) that can perform selective cell culture has been fabricated by F2 laser surface modification. The refractive index of CYTOP is almost the same as that of culture medium, which is essential for three-dimensional (3D) observation of cells. The F2 laser modification of CYTOP achieves hydrophilicity only on the laser irradiated area with little deterioration of the optical properties and surface smoothness. After the laser modification, HeLa cells were successfully cultured and strongly adhered only on the modified area of CYTOP. The cells patterned on CYTOP were applied for clear 3D observation using an optical microscope in phase contrast mode.  相似文献   

14.
A nano TiO2 film was coated on AZ31 alloy substrate by sol-gel method. The TiO2 film was characterized by X-ray diffractometry (XRD), differential scanning calorimetry-thermogravimetric analysis (DSC-TG), field emission scanning electron microscopy (FE-SEM) and energy dispersion spectroscopy (EDS). The degradation of the nano-TiO2 coated alloy was evaluated by immersion test and electrochemical measurement. An attempt was made to relate corrosion of coated alloys with the annealing treatment and resultant structural evolution.  相似文献   

15.
Five hundred nanometers of niobium films have been deposited on silicon(1 0 0) wafers with 100 or 300 nm thermally grown oxide by electron beam evaporation and DC magnetron sputtering. SEM and AFM investigations revealed smaller crystallites and rougher surfaces for the evaporated films. The differences in film morphology resulted in lower reflection intensities in XRD for the as-deposited evaporated films. In order to investigate the influence of the structural properties on their chemical reactivities, in a first set of experiments the films were nitrided with molecular nitrogen by rapid thermal processing (RTP) at varying temperatures. In another set of experiments after nitridation in nitrogen at 1000 °C an oxidation step in molecular oxygen at varying temperatures followed. The films showed different reactivities, leading to different rates of nitridation and oxidation. Sputtered films were less reactive than the evaporated films, deduced from the sequence of reaction products dependent on reaction temperature. XRD data indicated that oxynitrides have formed. Elemental depth profiles were measured by secondary ion mass spectrometry (SIMS).  相似文献   

16.
Utilizing BCl3 reaction on Ge(1 0 0) and subsequent Si epitaxial growth by SiH4 reaction at 300 °C, B atomic-layer doping in Si/Ge(1 0 0) heterostructure was investigated. Cl atoms on the B atomic-layer formed Ge(1 0 0) scarcely affect upon the SiH4 reaction. It is also found that Si atom amount deposited by SiH4 reaction on Ge(1 0 0) is effectively enhanced by the existence of B atomic layer and the deposition rate tends to decrease at around 2-3 atomic layers which is three times larger than that in the case without B. The results of angle-resolved X-ray photoelectron spectroscopy show that most B atoms are incorporated at the heterointerface between the Si and Ge.  相似文献   

17.
Electrical characteristics of B atomic-layer doped Si epitaxial films on Si(1 0 0) formed by B atomic-layer formation on Si(1 0 0) at 180 °C and subsequent capping Si deposition at 500 °C using ultraclean low-pressure chemical vapor deposition were investigated. From evaluation results of carrier concentration in the films, by low-temperature SiH4 exposure at 180-300 °C before the capping Si deposition at 500 °C, 70% improvement of B electrical activity was confirmed, and it is suggested that lowering the temperatures for B atomic-layer formation on Si(1 0 0) as well as SiH4 exposure before the capping Si deposition is effective to suppress B clustering and to achieve B atomic-layer doped Si films with extremely high carrier concentration.  相似文献   

18.
Platinum and carbon were deposited onto the surface of molybdenum grids simultaneously by ion beam assisted deposition. The structure of the Pt-C films was studied by XRD and Raman spectroscopy. The XRD results showed that Pt exhibited mixed strong (1 1 1) and weak (2 0 0) orientations. The Raman spectra showed that the carbon existed in the form of graphite-like phase. Electron emission characteristics from the Mo grid with and without Pt-C films were measured using analogous diode method. The results showed that electron emission from the Mo grid coated with Pt-C films was much less than that from the Mo grid without Pt-C films. The obtained results demonstrated that the Pt-C films are effective grid-coating materials for the application of suppression thermo-electron emission.  相似文献   

19.
The electrical and magnetic properties of thin iron (Fe) films have sparked significant scientific interest. Our interest, however, is in the fundamental interactions between light and matter. We have discovered a novel application for thin Fe films. These films are sources of terahertz (THz) radiation when stimulated by an incident laser pulse. After intense femtosecond pulse excitation by a Ti:sapphire laser, these films emit picosecond, broadband THz frequencies. The terahertz emission provides a direct measure of the induced ultrafast change in magnetization within the Fe film. The THz generation experiments and the growth of appropriate thin Fe films for these experiments are discussed. Several criteria are used to select the substrate and film growth conditions, including that the substrate must permit the epitaxial growth of a continuous, monocrystalline or single crystal film, yet must also be transparent to the emitted THz radiation. An Fe(0 0 1) film grown on the (0 0 1) surface of a magnesium oxide (MgO) substrate makes an ideal sample. The Fe films are grown by physical vapor deposition (PVD) in an ultrahigh vacuum (UHV) system. Low energy electron diffraction (LEED) and Auger electron spectroscopy (AES) are used to characterize the Fe(0 0 1) films. Two substrate surface preparation methods are investigated. Fe(0 0 1) films grown on MgO(0 0 1) substrates that are used as-received and films grown on MgO(0 0 1) substrates that have been UV/ozone-cleaned ex vacuo and annealed in vacuo produce the same results in the THz generation experiments. Either substrate preparation method permits the growth of samples suitable for the THz emission experiments.  相似文献   

20.
Indium tin oxide (ITO) films (physical thickness, 250-560 ± 25 nm) were deposited on soda lime silica (SLS) glass and silica layer coated (∼200 nm physical thickness) SLS glass substrates by sol-gel technique using alcohol based precursors containing different In:Sn atomic percentages, namely, 90:10, 70:30, 50:50, 30:70. Cubic phase of In2O3 was observed up to 50 at.% Sn while cassiterite SnO2 phase was observed for 70 at.% Sn. Work function of the films was evaluated from inelastic secondary electron cutoff of ultraviolet photoelectron spectroscopy (UPS) energy distribution curve (EDC) obtained under two experimental conditions (i) as-introduced (ii) after the cleaning of the surface by sputtering. Elemental distribution and the presence of oxygen containing contaminant and carbon contaminant of the samples were done by XPS analysis under same conditions. The work function changed little due to the presence of surface contaminants. It was in the range, 3.9-4.2 eV (±0.1 eV).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号