首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigated the surface characteristics and in vitro biocompatibility of a titanium (Ti) oxide layer incorporating calcium ions (Ca) obtained by hydrothermal treatment with or without post heat-treatment in the Ti-13Nb-13Zr alloy. The surface characteristics were evaluated by scanning electron microscopy, thin-film X-ray diffractometry, X-ray photoelectron spectroscopy, atomic force microscopy and contact angle measurements. In vitro biocompatibility of the Ca-containing surfaces was assessed in comparison with untreated surfaces using a pre-osteoblast cell line. Hydrothermal treatment produced a crystalline CaTiO3 layer. Post heat-treatment at 400 °C for 2 h in air significantly decreased water contact angles in the CaTiO3 layer (p < 0.001). The Ca-incorporated alloy surfaces displayed markedly increased cell viability and ALP activity compared with untreated surfaces (p < 0.001), and also an upregulated expression of various integrin genes (α1, α2, α5, αv, β1 and β3) at an early incubation time-point. Post heat-treatment further increased attachment and ALP activity in cells grown on Ca-incorporated Ti-13Nb-13Zr alloy surfaces. The results indicate that the Ca-incorporated oxide layer produced by hydrothermal treatment and a simple post heat-treatment may be effective in improving bone healing in Ti-13Nb-13Zr alloy implants by enhancing the viability and differentiation of osteoblastic cells.  相似文献   

2.
Since metallic biomaterials used for orthopedic and dental implants possess a paucity of reactive functional groups, bioactivity modification of these materials is challenging. In the present work, the titanium discs and rods were treated with carbon dioxide plasma and then incubated in a modified simulated body fluid 1.5SBF to obtain a hydroxyapatite layer. Surface hydrophilicity of samples, changes of surface chemistry, surface morphologies of samples, and structural analysis of formed hydroxyapatite were investigated by contact angle to water, X-ray photoelectron spectrometer (XPS), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) and X-ray diffraction (XRD). The results demonstrated that hydrophilicity of titanium surface was improved and hydroxyl groups increased after modification with carbon dioxide plasma treatment. The hydroxyl groups on the surface of titanium were the richest after carbon dioxide plasma treatment under the condition of 20 W for less than 30 s. The hydroxyapatite formability of titanium surface was enhanced by carbon dioxide plasma pretreatment, which was attributed to the surface chemistry. MC3T3-E1 cell as a model cell was cultured on the Ti, CPT-Ti and CPT/SBF-Ti discs in vitro, and the results of the morphology and differentiation of the cell showed that CPT/SBF-Ti was the highest bioactive. The relative parameters of the new bone around the Ti and CPT/SBF-Ti rods including bone mineral density (BMD), a ratio of bone volume to total volume (BV/TV), trabecular thickness (Tb.Th.) and trabecular number (Tb.N.) were analyzed by a micro-computed tomography (micro-CT) after 4-, 8- and 12-week implantation periods in vivo. The results indicated that the CPT/SBF-Ti was more advantageous for new bone formation.  相似文献   

3.
Quartz crystal microbalance dissipation (QCM-D) was used to monitor the layer by layer (LBL) self-assemble process of decyl bis phosphonate (DBP) and Collagen on titanium. The mass and viscoelastic properties of self-assembled layers were obtained using QCM-D. The stability of DBP and Collagen layer on titanium was tested to be very good. Osteoblasts cell culture was performed on LBL modified samples and that after BSA adsorption. The morphology of cells was observed by a scanning electron microscope (SEM). The total metabolic activity and differentiation of osteoblasts were evaluated by a metabolic assay and alkaline phosphatase (ALP) activity, respectively. These tests showed that osteoblasts have better activity, proliferation, and differentiation on Collagen terminated samples and BSA adsorbed samples.These results, along with the good biomineralization and protein adsorption abilities of Ti/DBP/Collagen surface (tested in our previous work), suggest titanium modified by this layer by layer technique has the potential application for medical implants.  相似文献   

4.
The surface reaction on titanium due to pulsed Nd:YAG laser irradiation in a nitrogen atmosphere was investigated using X-ray photoelectron spectroscopy (XPS). The laser, with a wavelength of 532 nm (SHG mode), was irradiated on a titanium substrate in an atmosphere-controlled chamber, and then the substrate was transported to an XPS analysis chamber without exposure to air. This in situ XPS technique makes it possible to clearly observe the intrinsic surface reaction. The characteristics of the surface layer strongly depend on the nitrogen gas pressure. When the pressure is 133 kPa, an oxynitride and a stoichiometric titanium nitride form the topmost and lower surface layers on the titanium substrate, respectively. However, only a nonstoichiometric titanium oxide layer containing a small amount of nitrogen is formed when the pressure is lower than 13.3 kPa. Repetition of laser shots promotes the formation of the oxide layer, but the formation is completed within a few laser shots. After the initial structure is formed, the chemical state of the surface layer is less influenced by the repetition of laser shots.  相似文献   

5.
Bone implants made of metal, often titanium or the titanium alloy Ti6Al4V, need to be surface treated to become bioactive. This enables the formation of a firm and durable connection of the prosthesis with the living bone. We present a new method to uniformly cover Ti6Al4V with a thin layer of ceramics that imitates bone material. These calcium alkali phosphates, called GB14 and Ca10, are applied to the metal by dip coating of metal plates into an aqueous slurry containing the fine ceramic powder. The dried samples are illuminated with the 790 nm radiation of a pulsed femtosecond laser. If the laser fluence is set to a value just below the ablation threshold of the ceramic (ca. 0.4 J/cm2) the 30 fs laser pulses penetrate the partly transparent ceramic layer of 20-40 μm thickness. The remaining laser fluence at the ceramic-metal interface is still high enough to generate a thin metal melt layer leading to the ceramic fixation on the metal. The laser processing step is only possible because Ti6Al4V has a lower ablation threshold (between 0.1 and 0.15 J/cm2) than the ceramic material. After laser treatment in a fluence range between 0.1 and 0.4 J/cm2, only the particles in contact with the metal withstand a post-laser treatment (ultrasonic cleaning). The non-irradiated rest of the layer is washed off. In this work, we present results of a successful ceramic fixation extending over larger areas. This is fundamental for future applications of arbitrarily shaped implants.  相似文献   

6.
Adsorption of human plasma fibrinogen, osteoblasts, and fibroblasts on differently treated titanium samples as implants were examined in this study. Titanium samples were mechanically polished, chemically etched (with and without surface material loss), and grinded. The main goal of this study is to find the best surface treatment of titanium for its possible use as implants. Atomic force microscopy was used to evaluate the adsorption of human plasma fibrinogen onto the titanium samples. Cell counting was used to determine the adherability of osteoblasts and fibroblasts on the titanium samples. Our preliminary results show that the etched titanium surface with surface material loss is the best surface treatment used in our experiments.  相似文献   

7.
One method to increase the clinical success rate of metal implants is to increase their bone bonding properties, i.e. to develop a bone bioactive surface leading to reduced risks of interfacial problems. Much research has been devoted to modifying the surface of metals to make them become bioactive. Many of the proposed methods include depositing a coating on the implant. However, there is a risk of coating failure due to low substrate adhesion. This paper describes a method to obtain bioactivity combined with a high coating adhesion via a gradient structure of the coating. Gradient coatings were deposited on Ti (grade 5) using reactive magnetron sputtering with increasing oxygen content. To increase the grain size in the coating, all coatings were post annealed at 385 °C. The obtained coating exhibited a gradual transition over 70 nm from crystalline titanium oxide (anatase) at the surface to metallic Ti in the substrate, as shown using cross-section transmission electron microscopy and X-ray photoelectron spectroscopy depth profiling. Using scratch testing, it could be shown that the adhesion to the substrate was well above 1 GPa. The bioactivity of the coating was verified in vitro by the spontaneous formation of hydroxylapatite upon storage in phosphate buffer solution at 37 °C for one week.The described process can be applied to implants irrespective of bulk metal in the base and should introduce the possibility to create safer permanent implants like reconstructive devices, dental, or spinal implants.  相似文献   

8.
To study interactions of osteoblast on different topography surfaces of titanium material through in vitro systems, four kinds of micro-topography surfaces on novel titanium material were investigated. They were laser-scanned surface (LS), sandblasted surface (SS), machine-tooled surface (MS) and polished surface (PS). The titanium samples were seeded with osteoblast and maintained for a period of 1-12 days. Adhesion in 24 h, proliferation in 12 days and ALP activity in 11 days were assessed. The cell morphologies were observed by scanning electron microscopy and fluorescence microscopy. The investigation showed better cell proliferation and best cell osteogenic differentiation on the micro-grooved surface (LS) at the cell scale (50 μm). Furthermore, osteoblast on the micro-grooved surfaces also displayed a more similar morphology to osteoblast in vivo. It was shown that surface micro-texture at the cell scale have a better effect on cell responses than rough surface and surface texture above the cell scale (>100 μm). The regular micro-grooved titanium surface at the cell scale can offer a better cell growth environment compared with the other titanium surfaces.  相似文献   

9.
10.
This study investigated the surface characteristics and in vitro biocompatibility of a titanium (Ti) oxide layer incorporating the manganese ions (Mn) obtained by hydrothermal treatment with the expectation of utilizing potent integrin-ligand binding enhancement effect of Mn for future applications as an endosseous implant surface. The surface characteristics were evaluated by scanning electron microscopy, thin-film X-ray diffractometry, X-ray photoelectron spectroscopy, optical profilometry and inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The in vitro biocompatibility of the Mn-containing Ti oxide surface was evaluated in comparison with untreated bare Ti using a mouse calvaria-derived osteoblastic cell line (MC3T3-E1). The hydrothermal treatment produced a nanostructured Mn-incorporated Ti oxide layer approximately 0.6 μm thick. ICP-AES analysis demonstrated that the Mn ions were released from the hydrothermally treated surface into the solution. Mn incorporation notably decreased cellular attachment, spreading, proliferation, alkaline phosphatase activity, and osteoblast phenotype gene expression compared with the bare Ti surface (p < 0.05). The results indicate that the Mn-incorporation into the surface Ti oxide layer has no evident beneficial effects on osteoblastic cell function, but instead, actually impaired cell behavior.  相似文献   

11.
We report on the synthesis by pulsed laser deposition with a KrF* excimer laser source (λ = 248 nm, τ = 25 ns) of bioglass thin films of 6P57 and 6P61 types. Physiology, viability, and proliferation of human osteoblast cells were determined by quantitative in vitro tests performed by flow cytometry on primary osteoblasts cultured on pulsed laser deposited bioglasses. Both types of glass films proved to be appropriate mediums for cell survival and proliferation. In a parallel investigation, cell morphology and adhesion to the surface was studied by fluorescence microscopy and scanning electron microscopy. Strong bonds between the materials and cells were found in both cases, as osteoblast pseudopodes penetrated deep into the material. According to our observations, the 6P57 glass films were superior with respect to viability and proliferation performances.  相似文献   

12.
Surface modifications have been applied in endosteal bone devices in order to improve the osseointegration through direct contact between neoformed bone and the implant without an intervening soft tissue layer. Surface characteristics of titanium implants have been modified by addictive methods, such as metallic titanium, titanium oxide and hydroxyapatite powder plasma spray, as well as by subtractive methods, such as acid etching, acid etching associated with sandblasting by either AlO2 or TiO2, and recently by laser ablation. Surface modification for dental and medical implants can be obtained by using laser irradiation technique where its parameters like repetition rate, pulse energy, scanning speed and fluency must be taken into accounting to the appropriate surface topography. Surfaces of commercially pure Ti (cpTi) were modified by laser Nd:YVO4 in nine different parameters configurations, all under normal atmosphere. The samples were characterized by SEM and XRD refined by Rietveld method. The crystalline phases αTi, βTi, Ti6O, Ti3O and TiO were formed by the melting and fast cooling processes during irradiation. The resulting phases on the irradiated surface were correlated with the laser beam parameters. The aim of the present work was to control titanium oxides formations in order to improve implants osseointegration by using a laser irradiation technique which is of great importance to biomaterial devices due to being a clean and reproducible process.  相似文献   

13.
The bond strength of the oxide film to the titanium substrate and its inherent structural characteristics are very important preconditions for the success of titanium implants. The purpose of this study was to evaluate the micro-morphologies, crystalline structures, and bond strengths of the anodically oxidized films formed on titanium with the variation of electrolytes and applied current densities. In contrast to the specimens produced using sulfuric acid as the electrolyte, those produced using phosphoric acid showed quite different shapes and densities of the pores as the applied current densities were varied. The oxide films anodized in sulfuric acid consisted of anatase and rutile TiO2, whileTiP2O7 was predominantly formed on the Ti surfaces anodized using phosphoric acid as the electrolyte. The oxide films, which did not experience spark deposition showed amorphous shape and their bond strengths were significantly lower than those of the other groups (p < 0.05). Those specimens which experienced initial spark deposition with a low current condition showed the highest bond strengths (34.2 MPa) within each electrolyte sub-set. The growing rates of the oxide film thicknesses in relation to the electric current changes varied according to the type of electrolyte, and the oxide film thickness influenced the bond strength.  相似文献   

14.
This paper addresses a hydrogen outgassing mechanism in titanium materials with extremely low outgassing property by investigating the distribution of hydrogen atoms concentration in depth below the surface, and the activation energy for desorption of dissolved hydrogen atoms into the boundary region between the surface oxide layer and the bulk titanium and that of adsorbed hydrogen atoms on the surface. The distribution of hydrogen atoms concentration in depth below the surface was analyzed by a time-of-flight secondary ion mass spectrometry (TOF-SIMS). The activation energy for desorption of dissolved hydrogen atoms was estimated by the thermal desorption spectroscopy (TDS) measurement with various heating rates. The activation energy for desorption of adsorbed hydrogen atoms was estimated by the temperature dependence of the outgassing rate in titanium material. In the titanium material, hydrogen atoms show maximum concentration at the boundary between the surface oxide layer and the bulk titanium. Concentration of hydrogen atoms decreases rapidly at the surface oxide layer, while it decreases slowly in the deep region below the surface layer-bulk boundary by the vacuum evacuation without/with the baking process. The activation energy for desorption of 1.02 eV of dissolved hydrogen atoms into the surface layer-bulk boundary is about three times as large as that of 0.38 eV of the adsorbed hydrogen atoms on the surface. These results suggest that the hydrogen outgassing mechanism in the titanium material is composed the follows processes, i.e. the slow hydrogen atoms diffusion at the surface layer-bulk boundary, quick hydrogen atoms diffusion at the surface oxide layer and rapid desorption of adsorbed hydrogen atoms on the surface. This outgassing mechanism gives very low hydrogen concentration near the surface, which results in the extremely low outgassing rate in titanium materials.  相似文献   

15.
This study examined the gelatin nano gold (GnG) composite for surface modification of titanium in addition to insure biocompatibility on dental implants or biomaterials. The GnG composite was constructed by gelatin and hydrogen tetrachloroaurate in presence of reducing agent, sodium borohydrate (NabH4). The GnG composite was confirmed by UV-VIS spectroscopy and transmission electron microscopy (TEM). A dipping method was used to modify the titanium surface by GnG composite. Surface was characterized by scanning electron microscopy (SEM) and energy dispersive X-ray (EDX). The MC-3T3 E1 cell viability was assessed by trypan blue and the expression of proteins to biocompatibility were analyzed by Western blotting. The GnG composite showed well dispersed character, the strong absorption at 530 nm, roughness, regular crystal and clear C, Na, Cl, P, and Au signals onto titanium. Further, this composite allowed MC-3T3 E1 growth and viability compared to gelatin and pure titanium. It induced ERK activation and the expression of cell adherent molecules, FAK and SPARC, and growth factor, VEGF. However, GnG decreased the level of SAPK/JNK. This shows that GnG composite coated titanium surfaces have a good biocompatibility for osteoblast growth and attachment than in intact by simple and versatile dipping method. Furthermore, it offers good communication between cell and implant surfaces by regulating cell signaling and adherent molecules, which are useful to enhance the biocompatibility of titanium surfaces.  相似文献   

16.
Potentiostatically anodized oxide films on the surface of commercial pure titanium (cp-Ti) formed in sulfuric (0.5 M H2SO4) and in phosphoric (1.4 M H3PO4) acid solutions under variables anodizing voltages were investigated and compared with the native oxide film. Potentiodynamic polarization and electrochemical impedance spectroscopy, EIS, were used to predicate the different in corrosion behavior of the oxide film samples. Scanning electron microscope, SEM, and electron diffraction X-ray analysis, EDX, were used to investigate the difference in the morphology between different types of oxide films. The electrochemical characteristics were examined in phosphate saline buffer solution, PSB (pH 7.4) at 25 °C. Results have been shown that the nature of the native oxide film is thin and amorphous, while the process of anodization of Ti in both acid solutions plays an important role in changing the properties of passive oxide films. Significant increase in the corrosion resistance of the anodized surface film was recorded after 3 h of electrode immersion in PSB. On the other side, the coverage (θ) of film formed on cp-Ti was differed by changing the anodized acid solution. Impedance results showed that both the native film and anodized film formed on cp-Ti consist of two layers. The resistance of the anodized film has reached to the highest value by anodization of cp-Ti in H3PO4 and the inner layer in the anodized film formed in both acid solutions is also porous.  相似文献   

17.
Previous research has investigated the effects of LLLT during titanium implantation, tooth movement and bone graft using deproteinized bovine bone and recognized that these circumstances were nothing more than intentional controlled overpressure against static cells since this controlled trauma could affect cell function/malfunction, or cell recovery/apoptosis. The present preliminary study was conducted to prove if LLL would influence cell viability and cell function after excessive damage, which is enough to diminish cell numbers and distort the features of cells. Our aim is to evaluate whether low level laser irradiation (LLLi) could be helpful in the recovery of traumatized osteoblasts (pressure damaged cells) by observing the morphology and the survival rate of those cells. This model used bone cell cultures which were traumatized by a pressure with 250 G of centripetal force and observed their response to such trauma and low level laser irradiation. In this experiment, a Ga-Al-As diode LLL (IMPRA-ORT, NDLux, Seoul, KOREA) was used with a wavelength of 808 nm, a focus of 14 × 24 mm, which was wide enough to cover the whole dish surface or well within at least 2 times radiation, and an output of 100 mW. Statistical analysis showed a higher recovery rate of damaged osteoblasts in the radiation group than the non-radiation group (p < 0.05). The nonradiation group had a very poor proliferation rate in comparison to the control group (p < 0.05) in every time period. In the control group, actin filaments showed a random orientation and cell process branched variously around each cell. In contrast, compressed cells, these patterns were turned into thicker and shorter cytoskeletons. As time progressed, every living cell recovered from the severe stress and recovered both form and function. In summary, the present study showed the capacity of LLLT to aid the recovery of the cell skeleton and affect cell viability on overpressured osteoblasts. These results may contribute toward a better understanding of the effect of LLLT on the recovery of cells after trauma. In addition, our results demonstrated that LLLT could be used in the field of bone tissue engineering to traumatized bone conditions and repair large bone defects such as bone graft and implant installation.  相似文献   

18.
Surface characteristics of the orthopedic implants remarkably affect the corresponding biological responses. In this study, Ti6Al4V alloy was subjected to the surface mechanical attrition treatment (SMAT) in order to achieve favorable surface properties. The SMAT substrates exhibited a highly hydrophilic surface with nanograins about 20–40 nm. Then, the in vitro and in vivo mineralizations were evaluated on the untreated and SMAT processed substrates. The in vitro experimental results showed a significant increase in the deposition of calcium-containing minerals on the SMAT surface both with and without osteoblasts. The in vivo experiments also revealed a higher bone mineral apposition on the SMAT processed implants after 8 and 12 weeks post operation. The well-organized bone formation on the SMAT substrates indicated an enhanced osseointegration on the bone-implant interface. Therefore, it was suggested that the obvious improvements of biomineralization and osseointegration were attributed to the nanostructure features on the SMAT surface, as well as the higher surface hydrophilicity.  相似文献   

19.
In this study we perform the first femtosecond laser surface treatment of titanium in order to determine the potential of this technology for surface structuring of titanium implants. We find that the femtosecond laser produces a large variety of nanostructures (nanopores, nanoprotrusions) with a size down to 20 nm, multiple parallel grooved surface patterns with a period on the sub-micron level, microroughness in the range of 1-15 μm with various configurations, smooth surface with smooth micro-inhomogeneities, and smooth surface with sphere-like nanostructures down to 10 nm. Also, we have determined the optimal conditions for producing these surface structural modifications. Femtosecond laser treatment can produce a richer variety of surface structures on titanium for implants and other biomedical applications than long-pulse laser treatments.  相似文献   

20.
The nitridation of titanium (Ti) caused by a Q-switched Nd:YAG laser under nitrogen gas atmosphere was investigated in situ using X-ray photoelectron spectroscopy (XPS). A laser having a wavelength of 1064 nm and 532 nm (SHG mode) was irradiated on a titanium substrate in an atmosphere-controlled chamber, and the substrate was then transported to an XPS analysis chamber without exposing it to air. The characteristics of the surface layer strongly depend on the laser power. When the power is relatively low, a titanium dioxide layer containing a small amount of nitrogen is formed on the substrate. Laser irradiation beyond a certain laser power is required to obtain a stoichiometric titanium nitride (TiN) layer. A TiN layer and an oxynitride layer with a TiOxNy-like structure are formed as the topmost and the lower surface layer, respectively, when the laser power exceeds this threshold value. The threshold laser power strongly depends on the wavelength of the laser, and this threshold value for the 532-nm laser is quite lower than that for the 1064-nm laser.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号