共查询到20条相似文献,搜索用时 15 毫秒
1.
Sasanka Deka 《Solid State Communications》2005,134(10):665-669
The electronic structure of polycrystalline ferromagnetic Zn1−xCoxO (0.05≤x≤0.15) and the oxidation state of Co in it, have been investigated. The Co-doped polycrystalline samples are synthesized by a combustion method and are ferromagnetic at room temperature. XPS and optical absorption studies show evidence for Co2+ ions in the tetrahedral symmetry, indicating substitution of Co2+ in the ZnO lattice. However, powder XRD and electron diffraction data show the presence of Co metal in the samples. This give evidence to the fact that some Co2+ ion are incorporated in the ZnO lattice which gives changes in the electronic structure whereas ferromagnetism comes from the Co metal impurities present in the samples. 相似文献
2.
V.M. Mikoushkin 《Applied Surface Science》2011,257(11):4941-4944
Nitridation of GaAs (1 0 0) by N2+ ions with energy Ei = 2500 eV has been studied by Auger- and Electron Energy Loss Spectroscopy under experimental conditions, when electrons ejected only by nitrated layer, without contribution of GaAs substrate, were collected. Diagnostics for quantitative chemical analysis of the nitrated layers has been developed using the values of NKVV Auger energies in GaN and GaAsN chemical phases measured in one experiment, with the accuracy being sufficient for separating their contributions into the experimental spectrum. The conducted analysis has shown that nanofilm with the thickness of about 4 nm was fabricated, consisting mainly of dilute alloy GaAs1−xNx with high concentration of nitrogen x ∼ 0.09, although the major part of the implanted nitrogen atoms are contained in GaN inclusions. It was assumed that secondary ion cascades generated by implanted ions play an important role in forming nitrogen-rich alloy. 相似文献
3.
Series of CoxCr1−x thin films have been evaporated under vacuum onto Si (1 0 0) and glass substrates. Chemical composition and interface properties have been studied by modelling Rutherford backscattering spectra (RBS) using SIMNRA programme. Thickness ranges from 17 to 220 nm, and x from 0.80 to 0.88. Simulation of the energy spectra shows an interdiffusion profile in the thickest films, but no diffusion is seen in thinner ones. Microscopic characterizations of the films are done with X-ray diffraction (XRD) measurements. All the samples are polycrystalline, with an hcp structure and show a 〈0 0 0 1〉 preferred orientation. Atomic force microscopies (AFM) reveal very smooth film surfaces. 相似文献
4.
Sachin D. Kshirsagar I.K. Gopalakrishnan Shailaja Mahamuni 《Solid State Communications》2007,143(10):457-460
Optical and magnetic properties of Co2+-doped ZnO nanocrystals were studied. Optical measurements confirm the incorporation of Co2+ in ZnO lattice with tetrahedral geometry. Optical absorption spectra also reveal the partial bleaching of the excitonic feature attributable to an increase in electron concentration. Magnetization measurements indicate the ferromagnetic ordering in Co2+-doped ZnO nanocrystals with saturation magnetization . No structural changes were observed in lightly doped ZnO nanocrystals. The present investigations are important in obtaining the ferromagnetic Zn1−xCoxO nanocrystals. 相似文献
5.
We report on the analysis of optical transmittance spectra and the resulting ferromagnetic characteristics of sputtered Zn1−xCoxO films. Zn1−xCoxO films were prepared on (0001)-oriented Al2O3 substrates by the radio-frequency (rf) magnetron co-sputtering method. The XRD results showed that the crystallinity of films was properly maintained up to x=0.30 and no second phase peaks were detected up to x=0.40. The transmittance spectra showed both the increase of the absorption band intensity and the red shift of the absorption peak as well as the band edge with increasing x. We have proved experimentally that these changes depend on Co concentration. These optical properties suggest that sp-d exchange interactions and typical d-d transitions become activated with increasing x, which leads to the enhancement of ferromagnetic properties in Zn1−xCoxO films as shown in the AGM results. Therefore, it is concluded that the ferromagnetism derives from the substitution of Co2+ for Zn2+ without changing the wurtzite structure. 相似文献
6.
Polycrystalline Zn1−xCoxO (x=0, 0.02, 0.05, 0.10 and 0.15) oxides have been synthesized by solid state reaction via sintering ZnO and Co powders in open air. X-ray diffraction analyses using Rietveld refinement indicate that a stoichiometric single phase with a wurtzite-like structure was found in Zn1−xCoxO samples with x up to 0.10. The elemental mapping using energy dispersive X-ray spectroscopic analyses presents a uniform distribution of Co. Optical transmittance measurements show that several extra absorption bands appear in the Co-doped ZnO, which is due to the transitions between the crystal-field-split 3d levels of tetrahedral Co2+ substituting Zn2+ ions. Raman measurements show that limited host lattice defects are induced by Co doping. Magnetization measurements reveal that the Co-doped ZnO samples are paramagnetic due to the absence of free carriers and in low temperature the dominant magnetic interaction is nearest-neighbor antiferromagnetic. 相似文献
7.
This Letter reports on structural and photoluminescence properties of Zn1 − xMnxO nanocrystalline powders, which were synthesized by using oxalate precursor decomposition method. From the XRD features, we have noticed that all samples exhibit wurtzite crystal structure. The origin of photoluminescence properties of Mn doped and undoped ZnO have been discussed. 相似文献
8.
S. Ghosh 《Journal of magnetism and magnetic materials》2010,322(14):1979-1984
Single-phase Zn1−xCoxO (0.02≤x≤0.08) dilute magnetic semiconductor is prepared by mechanical milling process. The shift of XRD peaks towards the higher angle and a redshift in the band gap compared to the undoped ZnO ensure the incorporation of Co2+ ions in the semiconductor host lattice. Pure ZnxCo1−xO phases show the paramagnetic behavior in the temperature range 80 K≤T≤300 K. The room temperature volume magnetic susceptibility (χv) estimated in case of Zn0.96Co0.04O is ∼10−5 emu/Oe cm3. The temperature dependence of susceptibility χv can be fitted well with Curie law confirming the paramagnetic interaction. The observed crystal-field splitting of 3d levels of Co2+ ions inside Zn1−xCoxO has been successfully interpreted using Curie law. 相似文献
9.
O. Bondarchuk S. Goysa I. Koval P. Melnik M. Nakhodkin 《Applied Surface Science》2009,255(12):6421-6425
Fine (oscillating) structure (FS) in the elastically scattered electron spectra (ESES) [O. Bondarchuk, S. Goysa, I. Koval, P. Melnik, M. Nakhodkin, Surf. Sci. 258 (1991) 239; O. Bondarchuk, S. Goysa, I. Koval, P. Melnik, M. Nakhodkin, Surf. Rev. Lett. 4 (1997) 965] was used to investigate surface structure of the SiOx (0 ≤ x ≤ 2). SiOx surface with different stoichiometry was prepared by implantation of 500 eV oxygen ions into a silicon wafer. Fourier transformation of the FS ESES contains one peak at 2.32 Å for Si, two peaks at 1.62 Å and 2.65 Å for a-SiO2 and three peaks centered at 1.6-1.7 Å, 2.1-2.2 Å and 2.65-3.04 Å for SiOx. Peaks at 1.62 Å and 2.65 Å are assigned to Si-O and O-O nearest distances correspondently. Ratio of the area under the peak at 2.65 Å to the area under the peak at 1.62 Å turned out to be not constant but grows linearly with the composition parameter x. The latter is considered to prove validity of the Random Bond Model to describe short-range order on the surface of non-stoichiometric silicon oxide. 相似文献
10.
The electronic structures and magnetic properties of Zn1−xCoxO (x=5.55%,8.33%,12.5%) are studied using first-principles calculations in combination with Monte Carlo (MC) simulation. The combinational method makes possible a complete simulation from the microscopic magnetic interaction to macroscopic magnetic behavior. The calculated results from first principles indicate that the ferromagnetic ground state is stabilized by a half-metallic electronic structure which originates from the strong hybridization between Co 3d electrons and O 2p electrons. With the magnetic coupling strengths obtained from first-principles calculations, the MC simulation predicts the ferromagnetism of Zn1−xCoxO (x=5.55%,8.33%,12.5%) with , which is consistent with the experimental facts. 相似文献
11.
Shiv P. Patel J.C. PivinA.K. Chawla Ramesh ChandraD. Kanjilal Lokendra Kumar 《Journal of magnetism and magnetic materials》2011,323(22):2734-2740
The magnetic properties of Zn1−xCoxS (x=0.025 and 0.05) thin films grown on α-quartz substrates at different temperatures (TS) of 200, 400 and 600 °C by means of pulsed laser deposition are presented. The films are crystallized with wurtzite structure. Optical absorption and transmission electron microscopy measurements indicate that Co ions are substituted to Zn on tetrahedral sites. Their magnetic response is composed of ferromagnetic and paramagnetic components of which respective strengths depend on TS and Co concentration. This behavior is interpreted as due to fluctuations in the magnetic ordering, depending on grain size and site location in grain boundaries or in crystal cores. 相似文献
12.
Hiroaki Tatematsu Toru Akiyama Kohji Nakamura Tomonori Ito 《Applied Surface Science》2009,256(4):1164-1167
The adsorption-desorption behavior of Si adatoms on GaAs(1 1 1)A-(2 × 2) surfaces is investigated using our ab initio-based approach, in which adsorption and desorption behavior of Si adatoms is described by comparing the calculated desorption energy obtained by total-energy electronic-structure calculations with the chemical potential estimated by quantum statistical mechanics. We find that the Si adsorption at the Ga-vacancy site on the (2 × 2) surfaces with As adatoms occurs less than 1140-1590 K while the adsorption without As adatom does less than 630-900 K. The change in adsorption temperature of Si adatoms by As adatoms is due to self-surfactant effects of As adatoms: the promotion of the Si adsorption triggered by As adatoms is found to be interpreted in terms of the band-energy stabilization. Furthermore, the stable temperature range for Si adsorbed surfaces with As adatoms agrees with the experimental results. The obtained results provide a firm theoretical framework to clarify n-type doping processes during GaAs epitaxial growth. 相似文献
13.
Series of CoxCr1−x thin films have been evaporated under vacuum onto Si(1 0 0) and glass substrates. Thickness ranges from 17 to 220 nm, and x from 0.80 to 0.88. Alternating gradient field magnetometer (AGFM) measurements provided saturation magnetization values ranging from 220 to 1200 emu/cm3. Values of squareness exceeding 0.8 have been measured. Coercive field may reach values up to 700 Oe, depending on the percentage of chromium, as well as the substrate nature and the direction of the applied magnetic field. The saturation magnetization value decreases as the Cr content increases. In order to study their dynamical magnetic properties, Brillouin Light Scattering (BLS) measurements have been performed on these samples. Stiffness constant value and anisotropy magnetic field were adjusted to fit the experimental BLS spectra. These results are analyzed and correlated. 相似文献
14.
S.Y. Yang B.Y. Man M. LiuC.S. Chen X.G. GaoC.C. Wang B. Hu 《Applied Surface Science》2011,257(9):3856-3860
Zn1−xCoxO thin films with c-axis preferred orientation were deposited on sapphire (0 0 0 1) by pulsed laser deposition (PLD) technique at different substrate temperatures in an oxygen-deficient ambient. The effect of substrate temperature on the microstructure, morphology and the optical properties of the Zn1−xCoxO thin films was studied by means of X-ray diffraction (XRD), atomic force microscopy (AFM), UV-visible-NIR spectrophotometer, fluorescence spectrophotometer. The results showed that the crystallization of the films was promoted as substrate temperature rose. The structure of the samples was not distorted by the Co incorporating into ZnO lattice. The surface roughness of all samples decreased as substrate temperature increased. The Co concentration in the film was higher than in the target. Emission peak near band edge emission of ZnO from the PL spectra of the all samples was quenched because the dopant complexes acted as non-radiative centers. While three emission bands located at 409 nm (3.03 eV), 496 nm (2.5 eV) and 513 nm (2.4 eV) were, respectively, observed from the PL spectra of the four samples. The three emission bands were in relation to Zn interstitials, Zn vacancies and the complex of VO and Zni (VOZni). The quantity of the Zn interstitials maintained invariable basically, while the quantity of the VOZni slightly decreased as substrate temperature increased. 相似文献
15.
Chia-Lung Tsai Chia-Jyi Liu Yu-Tai Shih Chao-Shien Huang Ya-Hui Chen 《Applied Surface Science》2009,255(20):8643-8647
Co0.2AlxZn0.8−xO films prepared with different molar ratio of aluminum nitrate to zinc acetate were deposited on substrates by the sol-gel technique. X-ray diffraction, photoluminescence and ferromagnetism measurements were used to characterize the Co0.2AlxZn0.8−xO diluted magnetic semiconductors. The authors found that the intensity of the acceptor-related photoluminescence increased with increasing aluminum concentration and an increase in the number of the acceptor-like defects (zinc vacancies especially) in the Co0.2AlxZn0.8−xO film might lead to the enhancement of the magnetic properties. This implies that controls of the aluminum concentration and the number of the acceptor-like defects are important factors to produce strong ferromagnetism Co0.2AlxZn0.8−xO films prepared by the sol-gel method. 相似文献
16.
O. Chaix-Pluchery B. ChenevierV. Aubry-Fortuna I. Matko 《Journal of Physics and Chemistry of Solids》2002,63(10):1889-1900
X-ray diffraction experiments have been combined with Raman scattering and transmission electron microscopy data to analyze the result of rapid thermal annealing (RTA) applied to Zr films, 16 or 80 nm thick, sputtered on Si1−xGex epilayers (0≤x≤1). The C49 Zr(Si1−xGex)2 is the unique phase obtained after complete reaction. ZrSi1−xGex is formed as an intermediate phase. The C49 formation temperature Tf is lowered by the addition of Ge in the structure. Above a critical Ge composition close to x=0.33, a film microstructure change was observed. Films annealed at temperatures close to Tf are continuous and relaxed. Annealing at T>Tf leads to discontinuous films: surface roughening resulting from SiGe diffusion at film grain boundaries occurred. Grains are ultimately partially embedded in a SiGe matrix. A reduction in the lattice parameters as well as a shift of Raman lines are observed as T exceeds Tf. Both Ge non-stoichiometry and residual stress have been considered as possible origins for these changes. However, as Ge segregation has never been detected, even by using very efficient techniques, it is thought that the changes originate merely from residual stress. The C49 grains are expected to be strained under the SiGe matrix effect and shift of the Raman lines would indicate the stress is compressive. Some simple evaluations of the stress values indicate that it varies between −0.3 and −3.5 GPa for 0≤x≤1 which corresponds to a strain in the range (−0.11, −1.15%). X-ray and Raman determinations are in good agreement. 相似文献
17.
A thermodynamic analysis is employed to investigate the intrinsic electrocaloric effect of Pb(Zr1 − xTix)O3 solid solution system under the different electric field. Theoretical analysis indicates that Pb(Zr1 − xTix)O3 system has the giant electrocaloric coefficient and the large adiabatic temperature change near its ferroelectric Curie temperature. The applied electric field decreases not only the electrocaloric coefficient but also its temperature dependence. Furthermore, it increases the adiabatic temperature change as well as its dependence of temperature. The temperature corresponding to the maximum of electrocaloric coefficient and adiabatic temperature change increases with the enhancement of electric field because of its first-order phase transition between ferroelectric phase and paraelectric phase. 相似文献
18.
19.
Shaoxiong LinXin Zhang Xuezhao ShiJinping Wei Daban LuYuzhen Zhang Huanhuan KouChunming Wang 《Applied Surface Science》2011,257(13):5803-5807
In this paper the fabrication and characterization of IV-VI semiconductor Pb1−xSnxSe (x = 0.2) thin films on gold substrate by electrochemical atomic layer deposition (EC-ALD) method at room temperature are reported. Cyclic voltammetry (CV) is used to determine approximate deposition potentials for each element. The amperometric I-t technique is used to fabricate the semiconductor alloy. The elements are deposited in the following sequence: (Se/Pb/Se/Pb/Se/Pb/Se/Pb/Se/Sn …), each period is formed using four ALD cycles of PbSe followed by one cycle of SnSe. Then the deposition manner above is cyclic repeated till a satisfactory film with expected thickness of Pb1−xSnxSe is obtained. The morphology of the deposit is observed by field emission scanning electron microscopy (FE-SEM). X-ray diffraction (XRD) pattern is used to study its crystalline structure; X-ray photoelectron spectroscopy (XPS) of the deposit indicates an approximate ratio 1.0:0.8:0.2 of Se, Pb and Sn, as the expected stoichiometry for the deposit. Open-circuit potential (OCP) studies indicate a good p-type property, and the good optical activity makes it suitable for fabricating a photoelectric switch. 相似文献
20.
BiFeO3/Zn1−xMnxO (x = 0-0.08) bilayered thin films were deposited on the SrRuO3/Pt/TiO2/SiO2/Si(1 0 0) substrates by radio frequency sputtering. A highly (1 1 0) orientation was induced for BiFeO3/Zn1−xMnxO. BiFeO3/Zn1−xMnxO thin films demonstrate diode-like and resistive hysteresis behavior. A remanent polarization in the range of 2Pr ∼ 121.0-130.6 μC/cm2 was measured for BiFeO3/Zn1−xMnxO. BiFeO3/Zn1−xMnxO (x = 0.04) bilayer exhibits a highest Ms value of ∼15.2 emu/cm3, owing to the presence of the magnetic Zn0.96Mn0.04O layer with an enhanced Ms value. 相似文献