首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
To describe the action mechanisms of Bacteriochlorin a (BCA), a second generation photosensitizer, in phosphate buffer (PB) and in dimyristoyl phosphatidylcholine (DMPC) liposomes we carried out oxygen consumption and ESR measurements. In PB, where BCA was in a monomer-dimer equilibrium, our results suggested that the oxygen consumption was related to the BCA monomers concentration in solution. Incorporation of BCA in DMPC liposomes, by promoting the monomerization of BCA, increased 9-fold the oxygen consumption in comparison to the value in PB. The use of specific singlet oxygen quenchers (Azide and 9,10-Anthracenedipropionic acid) in ESR and oxygen consumption experiments allowed us to assert that BCA was mainly a type II sensitizer when it was incorporated in DMPC. Finally, the cell survival of WiDr cells after a PDT treatment was measured for cells incubated with BCA in cell culture medium and cells incubated with BCA in DMPC. Irrespective of the dye concentration, the cell survival was lower when liposomes were used. This effect could be the result of a better BCA monomerization and/or a different BCA uptake in cells.  相似文献   

2.
A MECHANISM FOR THE METHYLENE BLUE SENSITIZED OXIDATION OF NUCLEOTIDES   总被引:1,自引:0,他引:1  
Abstract— An investigation of the methylene blue sensitized oxidation of isolated nucleotides has been carried out, based on the behaviour of the excited dye molecule in long-term irradiation and flash photolysis experiments. It was necessary first to establish the effect of the phosphate buffer upon the triplet excited state of the dye and the consequent effect upon its photo-fading. The buffer has a salt effect which accelerates the protonation of the dye triplet, and also the photoreduction of the dye which takes place through the resulting protonated triplet. Xanthosine monophosphate (XMP), which is the nucleotide most sensitive to the photodynamic action of methylene blue, is also effective in reducing the triplet of the dye, while other nucleotides which are resistant to photooxidation do not act as reducing agents. The quantum yield of the sensitized oxidation of XMP was found to correspond to that of the anaerobic photo-reduction of methylene blue in its presence, which leads to the conclusion that the primary step of the photooxidation is electron or hydrogen abstraction from the nucleotide by the triplet excited methylene blue molecule.  相似文献   

3.
Eight differently substituted title dye compounds have been investigated regarding intersystem crossing, triplet state, fluorescence and singlet excited state pKa properties. In general, non-halogenated oxazines and thiazines as well as a mono bromooxazine show very low triplet quantum yields, phi tau (less than 0.03) and relatively long triplet lifetimes (approximately 40 microseconds) in acidic methanol. The phi tau data correlate well with known singlet oxygen yields. In basic methanol no triplet transient is observed but a significant yield of a ground state transient protonated (base dye) form is produced with a short lifetime, approximately 400 ns. Fluorescence can be seen simultaneously from both the excited base and the protonated base dye forms in basic methanol. For iodinated oxazine or thiazines, the triplet yield increases and can be as high as 0.5 (diiodo case) in acidic methanol. The triplet lifetimes are further shortened to approximately 10 microseconds compared to the non-iodinated derivatives above. The triplet yields of the iodo compounds are higher or equal to known singlet oxygen yields. In basic methanol triplet yields up to 0.2 can be seen, the triplet lifetime are shortened still further to 1 microsecond but no observable protonated form is produced (in distinction to the non-iodinated cases). Consideration is given to the correlation of triplet and singlet oxygen yields, ground and excited pKa properties, spin-orbit coupling and internal conversion properties, solvent effects, and phototherapeutic activity of these dyes.  相似文献   

4.
The influence of DNA on the cistrans equilibrium and fluorescent properties of 3,3-diethyl-9-thiomethylthiacarbocyanine iodide (DTTC) in a phosphate buffer (pH 7) was studied by various photochemical techniques. The interaction of dye molecules with DNA leads to the formation of stable noncovalently bonded complexes. Data obtained from DTTC absorption and fluorescence spectra suggest that complexation proceeds primarily through the cis-form of the dye. Complexation with DNA leads to a substantial increase in the quantum yield of the triplet state of DTTC molecules. The rate constant for quenching the dye triplet state by oxygen turned out to be significantly lower than the diffusion-controlled value.  相似文献   

5.
Abstract The 83 μM hematoporphyrin (HP)-sensitized photooxidation of 0.1 mM tryptophan in aqueous solution buffered at pH 7.4 or in binary mixtures of phosphate buffer and organic solvents of higher (formamide) or lower (N,N-dimethylformamide, methanol, ethanol, tetrahydrofuran) polarity proceeds by a pure singlet oxygen (1O2) mechanism as suggested by azide quenching experiments, the rate-enhancing action of deuterated solvents, and the lack of any significant reaction between triplet HP and tryptophan. Both the first-order rate constant of the photoprocess and the photooxidation quantum yield (φ= 0.011 in phosphate buffer at pH 7.4) increase when the medium polarity is increased (e.g. φ= 0.024 in 90% formamide); this results mainly from the greater quantum yield of 1O2 generation and the longer lifetime of 1O2. The intrinsic reactivity of 1O2 with tryptophan is independent of formamide concentration. A moderate decrease in the medium polarity (e.g. in the range 0-30% methanol) enhances the efficiency of tryptophan photooxidation (φ= 0.014 in 30% methanol) as a result of the enhanced quantum yields of triplet HP and 1O2 formation. In contrast, the overall photooxidation rate is depressed at high concentrations of low-polarity organic solvents (e.g. φ= 0.0039 in 90% methanol) due to a 5.5-fold drop of the rate constant for the 1O2-tryptophan reaction which counteracts the enhancement of the lifetime and quantum yield of triplet HP and 1O2. The solvent composition also affects the equilibria between monomeric and multimeric forms of HP. However, under our experimental conditions, the aggregation state of HP appears to exert only a minor influence on the efficiency of tryptophan photooxidation.  相似文献   

6.
The spectral kinetic parameters of the triplet state of 3,3"-diethylthiacarbocyanine iodide (DTCI) in the presence of DNA were studied by pulse photolysis. The formation of DTCI complexes with DNA increases the quantum yield of the triplet state of the dye. Analysis of the absorption spectra of the ground and triplet states of DTCI at different DNA concentrations in a solution indicates the existence of two types of complexes. Complex formation decreases substantially the quenching rate constant of the triplet state of the dye by dioxygen.  相似文献   

7.
LASER FLASH SPECTROSCOPY OF METHYLENE BLUE WITH NUCLEIC ACIDS   总被引:1,自引:0,他引:1  
Absorption spectra, fluorescence spectra and quantum yields, triplet state absorption spectra, yields and rates of decay have been obtained for methylene blue (MB+), MB+/CT-DNA complexes and complexes of MB+ with the synthetic polynucleotides poly[d(G-C)] and poly[d(A-T)]. Strong fluorescence quenching is observed in the complexes of the dye with CT-DNA and poly[d(G-C)] concomitant with a decrease in the triplet yield. The fluorescence and triplet yield of MB+ with poly[d(A-T)] are similar to those of the free dye. The triplet decay times are increased in all three polymer/dye complexes and show a decreased sensitivity to oxygen quenching. These results are interpreted in terms of the binding of the dye to these polymers and the implications of polymer binding on the photosensitizing properties of the dye are discussed.  相似文献   

8.
The photophysical properties of merocyanine 540 have been determined in methanol solution over a modest temperature range. Triplet state population is inefficient (the limiting triplet quantum yield being 0.25) due to rapid isomerization of the central double bond from the first excited singlet state. Activation energies have been measured for isomerization from the excited singlet state (20 kJ mol-1) and for conversion of the resultant cis-isomer back to the original trans-form (63 kJ mol-1), both processes involving formation of a twisted species. The dye is easily oxidized to give an unstable adduct which decomposes on the sub-ms timescale. Reversible redox chemistry occurs upon excitation in the presence of electron acceptors. These various observations are discussed in terms of the known chemotherapeutic activity of MC540 and it is concluded that the most probable mechanisms for cytotoxicity involve either local thermal disruption of cell membranes or in situ photogeneration of toxins derived from breakdown of the dye.  相似文献   

9.
The photophysical properties of a novel 1,2,3,4,5,6-hexasubstituted fullerene derivative (1) are examined in this study. In addition to the ground state absorption spectrum of 1, we report its triplet-triplet absorption spectrum and molar extinction coefficient (Deltae(T-T)), as well as the triplet quantum yield (PhiT), lifetime (tauT), and energy (ET). The saturation of a single six-member ring on the fullerene cage results in significant changes in the triplet state properties as compared to that of pristine C60. The triplet-triplet absorption spectrum shows a hypsochromic shift in long wavelength absorption, and both the triplet state lifetime and the triplet quantum yield are decreased. The triplet energy was found to be similar to that of C60. In addition, the quantum yield (PHI(delta)) of singlet oxygen generated by 1 was calculated and is found to be significantly less than in the case of C60.  相似文献   

10.
Abstract— The photoreduction of thiazine dyes by ethylene diamine tetraacetic acid (EDTA) was investigated by Rash photolysis. This reaction was found to occur according to a three-step mechanism. the first being the formation of the dye triplet state followed, in weakly acid solutions, by protonation. During the second step, the triplet state of the dye disappears through two competing processes: spontaneous deactivation and reaction with EDTA, which leads to the semireduced dye. The third step leads to the leucodye. It is shown that the overall quantum yield of photoreduction is governed by the second step and can be calculated from the ratio of the rate constants of the two elementary processes involved in this step. This ratio was measured over a wide pH range.  相似文献   

11.
Lipofuscin is thought to be involved in age-related macular degeneration as is one of its proposed components, an amphiphillic pyridinium-based bis-retinoid with a quaternary nitrogen atom, known as A2-E. We report the triplet state spectra obtained from photosensitisation using anthracene and 1-nitronaphthalene in benzene and methanol. The triplet state of A2-E has lambda(max) at 550 nm and a lifetime of approximately 30 micros, it is efficiently quenched by molecular oxygen with a second-order quenching rate constant of approximately 1 x 10(9) dm(3) mol(-1) s(-1). There is no significant triplet state formation from direct laser excitation of A2-E and hence its quantum yield of triplet state formation must be <0.01.  相似文献   

12.
The 355 nm laser flash photolysis of argon-saturated pH 8 phosphate buffer solutions of the fluoroquinolone antibiotic flumequine produces a transient triplet state with a maximum absorbance at 575 nm where the molar absorptivity is 14,000 M(-1) cm(-1). The quantum yield of triplet formation is 0.9. The transient triplet state is quenched by various Type-1 photodynamic substrates such as tryptophan (TrpH), tyrosine, N-acetylcysteine and 2-deoxyguanosine leading to the formation of the semireduced flumequine species. This semireduced form has been readily identified by pulse radiolysis of argon-saturated pH 8 buffered aqueous solutions by reaction of the hydrated electrons and the CO2*- radicals with flumequine. The absorption maximum of the transient semireduced species is found at 570 nm with a molar absorptivity of 2,500 M(-1) cm(-1). In argon-saturated buffered solutions, the semireduced flumequine species formed by the reaction of the flumequine triplet with TrpH stoichiometrically reduces ferricytochrome C (Cyt Fe3+) under steady state irradiation with ultraviolet-A light. In the presence of oxygen, O2*- is formed but the photoreduction of Cyt Fe3+ by O2*- competes with an oxidizing pathway which involves photo-oxidation products of TrpH.  相似文献   

13.
The triplet state of pyrromethene 567, a molecule with potential as a solid state laser dye, has been characterized in benzene by pulse radiolysis in terms of its absorption spectrum, lifetime, self-quenching, electronic excitation energy, triplet–triplet extinction coefficient and oxygen quenching rate constant. The use of laser flash photolysis has then allowed determination of the triplet quantum yield, efficiency of formation of singlet oxygen (1Δg), and the rate constant for reaction of the latter species with the ground state. The affects of oxygen on the fluorescence and triplet yields demonstrate that oxygen-induced intersystem crossing is important, the sum of these parameters being unity within experimental error. The mechanism of reaction of P-567 with 1Δg in benzene is predominantly physical in character with only a small (6%) contribution from chemical reaction.  相似文献   

14.
The photophysical properties of the fluoroquinolone antibiotic sarafloxacin (SFX) were investigated in aqueous media. SFX in water, at pH 7.4, shows intense absorption with peaks at 272, 322 and 335 nm, (? = 36800 and 17000 dm3 mol?1 cm?1, respectively). Both the absorption and emission properties of SFX are pH‐dependent; pKa values for the protonation equilibria of both the ground (5.8 and 9.1) and excited singlet states (5.7 and 9.0) of SFX were determined spectroscopically. SFX fluoresces weakly, the quantum yield for fluorescence emission being maximum (0.07) at pH 8. Laser flash photolysis and pulse radiolysis studies have been carried out in order to characterize the transient species of SFX in aqueous solution. Triplet–triplet absorption has a maximum at 610 nm with a molar absorption coefficient of 17,000 ± 1000 dm3 mol?1 cm?1. The quantum yield of triplet formation has been determined to be 0.35 ± 0.05. In the presence of oxygen, the triplet reacts to form excited singlet oxygen with quantum yield of 0.10. The initial triplet (3A*) was found to react with phosphate buffer to form triplet 3B* with lower energy and longer lifetime and having an absorption band centered at 700 nm. SFX triplet was also found to oxidize tryptophan to its radical with concomitant formation of the anion radical of SFX. Hence the photosensitivity of SFX could be initiated by the oxygen radicals and/or by SFX radicals acting as haptens.  相似文献   

15.
The photophysics and photochemical behavior of the phenoxazin-3-one dyes, resazurin and resorufin, have been studied in aqueous solutions. The irradiation of resazurin in the presence of amines leads to deoxygenation of the N-oxide group, giving resorufin. This photoreaction is highly dependent on the amine structure and is efficient only in the presence of tertiary aliphatic amines. The absorption and fluorescence properties of these dyes are dependent on pH. At pH above 7.5 both dyes are in their anionic form. For resorufin this form is highly fluorescent (phiF = 0.75). At lower pH the fluorescence is strongly reduced. The N-oxide dye presents a very weak fluorescence quantum yield (0.11), which also is reduced at low pH. Flash photolysis experiments allowed characterization of the triplet state and the transients formed after irradiation of these dyes in the absence and presence of amines. The triplet quantum yields are 0.08 for resazurin and 0.04 for resorufin. The photodeoxygenation of N-oxide in the presence of amines occurs from the triplet state.  相似文献   

16.
Tarazi L  George A  Patonay G  Strekowski L 《Talanta》1998,46(6):1413-1424
The spectral features of the near-infrared (NIR) dye TG-170 in different solutions and its complexation with several metal ions were investigated. The absorbance maxima of the dye are at λ=819, 805, and 791 nm in dimethyl sulfoxide (DMSO), methanol, and a buffer of pH 5.9, respectively. These values match the output of a commercially available laser diode (780 nm), thus making use of such a source practical for excitation. The emission wavelengths of the dye are at λem =822, 812, and 803 nm in DMSO, methanol, and the buffer, respectively. The molar absorptivity and fluorescence quantum yield increase accordingly. The addition of either an Al(III) ion or Be(II) ion resulted in fluorescence quenching of the dye. The Stern–Volmer quenching constant, KSV, was calculated from the Stern–Volmer plot to be KSV=3.11×105 M−1 for the Al(III) ion and KSV=1.17×106 M−1 for the Be(II) ion. The molar ratio of the metal to the dye was established to be 1:1 for both metal ions. The stability constant, KS, of the metal–dye complex was calculated to be 4.37×104 M−1 for the Al–dye complex and 1.94×106 M−1 for the Be–dye complex.  相似文献   

17.
A naphthiothiophene-2-carboxanilide bearing a leaving group at the C-3 position undergoes efficient electrocyclic ring closure and leaving group expulsion upon direct photolysis. The reaction occurs in the triplet excited state and can be sensitized by thioxanthone. Thioxanthone as chromophore can also be covalently attached to amide nitrogen by a trimethylene linker, and the photoreaction is equally efficient. Quenching studies show that the triplet excitation is localized primarily on the naphthothiophene moiety, due to rapid exothermic energy transfer from the thioxanthone chromophore. Acriflavin dye is capable of sensitizing the photoreaction at 450?nm, but the quantum yield is low in this case.  相似文献   

18.
An absorption and emission spectroscopic characterization of roseoflavin (8-dimethylamino-8-demethyl-riboflavin, RoF) in aqueous solutions was carried out. The studies were concentrated on roseoflavin in pH 8 phosphate buffer. Absorption cross-section spectra, fluorescence excitation spectra, fluorescence quantum distributions, fluorescence quantum yields and fluorescence lifetimes were determined. The fluorescence of RoF is quenched by photo-induced intra-molecular charge-transfer at room temperature. The photo-degradation of RoF in un-buffered water, in Tris–HCl buffer, and in phosphate buffer was studied. Phosphate buffer and to a smaller extent Tris buffer catalyse the RoF photo-degradation. Photo-excitation of the primary photoproduct, 8-methylamino-riboflavin (8-MNH-RF), enhanced the RoF degradation by triplet 8-MNH-RF – singlet RoF excitation transfer with subsequent triplet-state RoF degradation.  相似文献   

19.
trans- and cis-1-(4-Dimethylaminophenyl)-6-(4-nitrophenyl)hex-3-ene-1,5-diynes (trans- and cis-DANE) were synthesized and their photochemical properties were studied. The absorption spectra of trans-DANE red-shifted compared with the parent compound bisphenylethynylethene (BEE) due to intramolecular charge transfer. The fluorescence spectra, Stokes shift, fluorescence lifetime, fluorescence quantum yield, and quantum yield of trans-to-cis photoisomerization of trans-DANE showed strong dependence upon the solvent polarity in the less-polar region. No fluorescence emission from trans-DANE was observed in medium-polar and polar solvents. The quantum yield of cis-to-trans isomerization was almost solvent independent. The donor-acceptor substituents shifted the equilibrium between the trans perpendicular triplet state and the trans planar triplet state to the trans triplet state, and resulted in an increase in the triplet lifetime. Comparison of the photochemical properties of trans-DANE with trans-4-dimethylamino-4'-nitrostilbene (DANS) suggests that trans-DANE is a possible fluorescent probe in the non-polar region.  相似文献   

20.
Abstract The Primary reactions of the cosin-and fluorescein-photosensitized autoxidation of L-tyrosine were studied in aqueous media (pH = 8.6) by the flash-photolysis technique. The dye molecules were quantitatively converted to their triplet states in a single flash. The triplet dye molecules were found to react with tyrosine or oxygen. Ground state or radical dye molecules were formed in these reactions. Some 40 per cent of the triplet-tyrosine reactions yielded radicals, in triplet dye-oxygen reactions the corresponding yield was less than 10 per cent. The ground state dye was regenerated from the semireduced dye in reactions with oxygen and from the semioxidized dye in reactions with tyrosine. In the absence of oxygen the radicals formed in the photoinduced electron-transfer between the triplet dye and tyrosine recombined to a large extent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号