首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A range of vibrational levels of the D 0(u)(+)((3)P(2)) and F' 0(u)(+)((1)D(2)) ion-pair states of I(2) is shown to be easily generated by amplified spontaneous emission (ASE) from their more accessible partners, E 0(g)(+)((3)P(2)) and f' 0(g)(+)((1)D(2)), in sufficient concentration for dispersed fluorescence studies of the D 0(u)(+)((3)P(2)) --> 0(g)(+)(bb) and F' 0(u)(+)((1)D(2)) --> 0(g)(+)(bb) transitions to be carried out. T(0) (J = 49) of this shallow-bound 0(g)(+)(bb) valence state is unambiguously determined and an improved R(e) value of 3.952 +/- 0.005 A is obtained from optimizing the fit of the intensities of the vibrational progressions in the 0(g)(+)(bb) state, and T(e) is found to be 27311.3 +/- 2 cm(-1), leading to D(e) = 442.0 +/- 2 cm(-1).  相似文献   

2.
Vibrational levels of the F(')0(u)(+)((1)D(2)), F0(u)(+)((3)P(0)), and D0(u)(+)((3)P(2)) ion-pair states of (35)Cl(2) and (35)Cl(37)Cl in the range 62,500-67,600 cm(-1) have been observed using (1 + 2(')) optical-optical double resonance excitation with mass-resolved ion detection. The strong F(')0(u)(+)((1)D(2))/F0(u)(+)((3)P(0)) coupling has been modelled by a coupled two-state calculation. An optimized fit of the experimental data used an F(')0(u)(+)((1)D(2)) state potential with a T(e) of 65,177 cm(-1) and an R(e) of ≈2.636 ? with a coupling constant of ≈430 cm(-1). The calculation assigns the first observed members of the F(')0(u)(+)((1)D(2)) state progression of (35)Cl(2) and (35)Cl(37)Cl at 64,998 and 65,094 cm(-1), respectively, as transitions to v = 0.  相似文献   

3.
Quantum state-to-state dynamics for the quenching process Br((2)P(1/2)) + H(2)(v(i) = 0, 1, j(i) = 0) → Br((2)P(3/2)) + H(2)(v(f), j(f)) has been studied based on two-state model on the recent coupled potential energy surfaces. It was found that the quenching probabilities have some oscillatory structures due to the interference of reflected flux in the Br((2)P(1/2)) + H(2) and Br((2)P(3/2)) + H(2) channels by repulsive potential in the near-resonant electronic-to-vibrational energy transfer process. The final vibrational state resolved integral cross sections were found to be dominated by the quenching process Br((2)P(1/2)) + H(2)(v) → Br((2)P(3/2)) + H(2)(v+1) and the nonadiabatic reaction probabilities for Br((2)P(1/2)) + H(2)(v = 0, 1, j(i) = 0) are quite small, which are consistent with previous theoretical and experimental results. Our calculated total quenching rate constant for Br((2)P(1/2)) + H(2)(v(i) = 0, j(i) = 0) at room temperature is in good agreement with the available experimental data.  相似文献   

4.
Electric-field-induced electronic state g/u mixing of nearly isoenergetic rovibrational levels of the E0g+(3P2) and D0u+(3P2) ion-pair states of I2 has been observed using optical triple resonance combined with resonance ionization. Detectable mixing with applied fields of 1 kV/cm occurs over a range of energy level separations of < or = 0.3 cm(-1).  相似文献   

5.
We have computed the cross sections for the energy transfer process Cd(5p3P0) + Na(3s2S) → Cd(5s1S) + Na(4p2P) and for the state changing collision Na(4p2P) + Na(3s2S) → Na(3d2D) + Na(3s2S), based on theoretical interaction potentials for the NaCd and Na2 systems, respectively. Our calculations shed light on the interpretation of experiments with laser excited Na+Cd vapour mixtures [1]. It turns out that Cd(5p3P0), in rapid equilibrium with the doorway state Cd(5p3P1), efficiently transfers energy to Na, populating the 4p2P state. The collisions with ground state Na cause a very fast conversion of the 4p3P1 to the 3d2D state, from which the strongest emission is observed.  相似文献   

6.
Photoassociation spectroscopy of ultracold Cs below the 6P(3/2) limit   总被引:1,自引:0,他引:1  
High precision photoassociation spectroscopy is performed in ultracold cesium gas, with detunings as large as 51 cm(-1) below the Cs(6S(1/2))+Cs(6P(3/2)) asymptote. Trap-loss fluorescence detection is used for detecting the photoassociation to excited state ultracold molecules. Long vibrational progressions are assigned to electronic states of 0(g) (-), 0(u) (+), and 1(g) symmetry. The spectral data are fitted to a LeRoy-Bernstein equation, in order to obtain the effective coefficients of the leading long-range interaction term (C(3)/R(3)) and the relative vibrational quantum numbers measured down from dissociation. Additionally we present evidence for perturbations between the 0(g) (-) state and the dark 2(u) state.  相似文献   

7.
A new family of mixed-lanthanide cyano-bridged coordination polymers Ln(0.5)Ln'(0.5)(H(2)O)(5)[W(CN)(8)] (where Ln/Ln' = Eu(3+)/Tb(3+), Eu(3+)/Gd(3+), and Tb(3+)/Sm(3+)) containing two lanthanide and one transition metal ions were obtained and characterized by X-ray diffraction, photoluminescence spectroscopy, magnetic analyses, and theoretical computation. These compounds are isotypical and crystallize in the tetragonal system P4/nmm forming two-dimensional grid-like networks. They present a magnetic ordering at low temperature and display the red Eu(3+) ((5)D(0) → (7)F(0-4)) and green Tb(3+) ((5)D(4) → (7)F(6-2)) characteristic photoluminescence. The Tb(0.5)Eu(0.5)(H(2)O)(5)[W(CN)(8)] compound presents therefore green and red emission and shows Tb(3+)-to-Eu(3+) energy transfer.  相似文献   

8.
The stepwise three-photon two-color laser excitation scheme is used for selective population of the first-tier ion-pair D0(+)(u) state of molecular iodine. Collection and analysis of the luminescence after the excitation of the v(D) = 6, 8, 13 and 18 vibronic levels of the D state in the pure iodine vapor and the gas-phase mixtures with He, Ar and Xe provide the total and, whenever possible, partial rate constants for the collision-induced non-adiabatic transitions to the other ion-pair states of the first tier. Comparison with the analogous data obtained previously for the non-adiabatic transitions from the E0(+)(g) state reveals the similarity between two cases. For He, the D ? E transitions are preferable, whereas for Ar and Xe transitions to the D' and β states dominate at v(D) = 6, 8 and 13, in accord with the statistical considerations. Efficient population of the δ state at v(D) = 18 in Ar and Xe is the most prominent non-statistical feature observed. The vibrational product state distributions for the D → E transitions are also obtained. In contrast to the previously studied E → D transition, they show significant positive vibronic energy transfer. The measurements for He and Ar are accompanied by the quantum scattering calculations that reproduce well the main qualitative features of the experimental results.  相似文献   

9.
We report the analysis of the 2g(1D) ion-pair state of I2 by perturbation-facilitated optical-optical double resonance. The present study began with the observation of the 2g(1D)-A' 3Pi(2u) emission at around 230 nm during the analysis of the ultraviolet emissions originating form the 1u(1D) ion-pair state. The identification of this new transition helped us to specify the wavelengths for detecting the 2g(1D) state by emission, and also to estimate its absolute position. The intermediate states used to observe the 2g(1D) state were the B 3Pi(0u(+))-b' 2u mixed states by the hyperfine interaction, which allowed us to combine the X 1Sigmag(+) ground state with the 2g(1D) state in the (1+1) photon excitation following the optical selection rules for one-photon transitions: 2g(1D)<--b' 2u-B 3Pi(0u(+))<--X 1Sigmag(+). Our analysis covered the 2g(1D) state in the 0< or =v< or =12 and 9< or =J< or =40 ranges. The molecular constants and Rydberg-Klein-Rees (RKR) potential of the 2g(1D) state were reported. We discussed the occurrence of the 2g(1D)-A' 3Pi(2u) emission, when exciting to the 1u(1D) v=0 state, and attributed it to the g/u mixing between the 2g(1D) and 1u(1D) states by the hyperfine interaction. The effect of the perturbation on measured line intensities and lifetimes was evident.  相似文献   

10.
The Cs(2) 2 (3)Delta(1g) and b (3)Pi(0u) states have been observed by infrared-infrared double resonance spectroscopy for the first time. 221 2 (3)Delta(1g)<--A (1)Sigma(u) (+)<--X (1)Sigma(g) (+) double resonance lines have been assigned to transitions into the 2 (3)Delta(1g) v=6-13 vibrational levels. Resolved fluorescence into the b (3)Pi(0u) v(')=0-48 levels has been recorded. Molecular constants and potential energy curves are determined by the global fit of the entire set of the experimental data. Theoretical potential energy curves of the 2 (3)Delta(g) and b (3)Pi(u) states have been determined in the framework of the pseudopotential method and are compared with the experimental results.  相似文献   

11.
This paper reports the optical properties of Dy(3+) in sodium fluoroborate glasses of the type XNaF.(89-X)B(2)O(3).10 Al(2)O(3).1Dy(2)O(3) (where X=8, 12, 16, 20 and 24). Judd-Ofelt intensity parameters (Omega(2), Omega(4), Omega(6)) are derived from the absorption spectra. The Judd-Ofelt theory has been applied to interpret the local environment of Dy(3+) ions and bond covalency of RE-O bond. These parameters have been used to calculate radiative transition probabilities (A(rad)), lifetimes (tau(R)) and branching ratios (beta(R)) for the excited level (4)F(9/2). The predicted values of tau(R) are compared with the measured values for (4)F(9/2) level for five glass compositions (Glass (A-E)). The stimulated emission cross-section sigma(lambda(P)) are also evaluated for the (4)F(9/2)-->(6)H(J) (J=11/2, 13/2, and 15/2) transitions.  相似文献   

12.
The production yields of H(D) atoms in the reactions of N(2)(A (3)Sigma(u) (+)) with C(2)H(2), C(2)H(4), and their deuterated variants were determined. N(2)(A (3)Sigma(u) (+)) was produced by excitation transfer between Xe(6s[32](1)) and ground-state N(2) followed by collisional relaxation. Xe(6s[32](1)) was produced by two-photon laser excitation of Xe(6p[12](0)) followed by concomitant amplified spontaneous emission. H(D) atoms were detected by using vacuum-ultraviolet laser-induced fluorescence (LIF). The H(D)-atom yields were evaluated from the LIF intensities and the overall rate constants for the quenching, which were determined from the temporal profiles of the NO tracer emission. The absolute yields were evaluated by assuming that the yield for NH(3)(ND(3)) is 0.9. Although no HD isotope effects were observed in the overall rate constants, there were isotope effects in the H(D)-atom yields. The H-atom yields for C(2)H(2) and C(2)H(4) were 0.52 and 0.30, respectively, while the D-atom yields for C(2)D(2) and C(2)D(4) were 0.33 and 0.13, respectively. The presence of isotope effects in yields suggests that H(2)(D(2)) molecular elimination processes are competing and that molecular elimination is more dominant in deuterated species than in hydrides.  相似文献   

13.
Steric effect in the energy transfer reaction of N(2)(A(3)Σ(u)(+)) + NO(X(2)Π) → NO(A(2)Σ(+)) + N(2)(X(1)Σ(g)(+)) has been studied under crossed beam conditions at a collision energy of ~0.07 eV by using an aligned N(2)(A(3)Σ(u)(+)) beam prepared by a magnetic hexapole. The emission intensity of NO(A(2)Σ(+)) has been measured as a function of the magnetic orientation field direction (i.e., alignment of N(2)(A(3)Σ(u)(+))) in the collision frame. A significant alignment effect on the energy transfer probability is observed. The shape of the steric opacity function turns out to be most reactive at the oblique configuration of N(2)(A(3)Σ(u)(+)) with an orientation angle of γ(v(R)) ~ 45° with respect to the relative velocity vector (v(R)), which has a good correlation with the spatial distribution of the 2pπ(g)* molecular orbital of N(2)(A(3)Σ(u)(+)). We propose the electron exchange mechanism in which the energy transfer probability is dominantly controlled by the orbital overlap between N(2)(2pπ(g)*) and NO(6σ).  相似文献   

14.
Steric effect for the formation of N 2 (B, (3)Pi u ) in the energy transfer reaction of Kr ( (3)P 2) + N 2 has been measured using an oriented Kr ( (3)P 2, M J = 2) beam at a collision energy of 0.07 eV. The N 2 (B, (3)Pi u ) emission intensity was measured as a function of the magnetic orientation field direction in the collision frame. A significant atomic alignment effect on the energy transfer probability was observed. This result was compared with that for the formation of N 2 (C, (3)Pi g ) in the Ar ( (3)P 2) + N 2 reaction. Despite the large difference on the energy transfer cross-section, the atomic alignment dependence for Kr ( (3)P 2) + N 2 is found to be analogous to that for Ar ( (3)P 2) + N 2. It is revealed that the configuration of inner 4p (3p) orbital in the collision frame gives an important role for the stereoselectivity on electron transfer process via the curve-crossing mechanism.  相似文献   

15.
Oxygen Rydberg time-of-flight spectroscopy was used to study the vacuum ultraviolet photodissociation dynamics of N(2)O near 130 nm. The O((3)P(J)) products were tagged by excitation to high-n Rydberg levels and subsequently field ionized at a detector. In agreement with previous work, we find that O((3)P(J)) formation following excitation to the repulsive N(2)O D((1)Sigma(+)) state produces the first two electronically excited states of the N(2) counterfragment, N(2)(A (3)Sigma(u) (+)) and N(2)(B (3)Pi(g)). The O((3)P(J)) translational energy distribution reveals that the overall branching ratio between N(2)(A (3)Sigma(u) (+)) and N(2)(B (3)Pi(g)) formation is approximately 1.0:1.0 for J = 1 and 2, with slightly less N(2)(B (3)Pi(g)) produced in coincidence with O((3)P(0)). The angular distributions were found to be independent of J and highly anisotropic, with beta = 1.5+/-0.2.  相似文献   

16.
In order to study the Fe-Cu interactions and their effects on 31p NMR, the structures of mononuclear complex Fe(CO)3fPhzPpy)a 1 and binuclear complexes Fe(CO)3(PhEPpy)z(CuXn) (2: Xn = Cl2^2-, 3: Xn = Cl-, 4: Xn = Br-) are calculated by density functional theory (DFT) PBE0 method. For complexes 1, 3 and 4, the 31p NMR chemical shifts calculated by PBE0-GIAO method are in good agreement with experimental results. The 31p chemical shift is 82.10 ppm in the designed complex 2. The Fe-Cu interactions (including Fe→Cu and Fe←Cu charge transfer) mainly exhibit the indirect interactions. Moreover, the Fe-Cu(I) interactions (mostly acting as σFe-p→4Scu and aFe-C→4Scu charge transfer) in complexes 3 and 4 are stronger than Fe-Cu(Ⅱ) interactions (mostly acting as σFe-p→4Scu and σFe-p←4Sc,) in complex 2. In complex 2, the stronger Fe←Cu interac- tions, acting as σFe-p←44SCu charge transfer, increase the electron density on P nucleus, which causes the upfield 31p chemical shift compared with mononuclear complex 1. For 3 and 4, although a little deshielding for P nucleus is derived from the delocalization of σFe-p→4Scu due to the Fe→Cu interactions, the stronger σFe-c→np charge-transfer finally increases the electron density on P nucleus. As a result, an upfield 31p chemical shift is observed compared with 1. The stability follows the order of 2〉3=4, indicating that Fe(CO)3(PhzPpy)2(CuCl2) is stable and could be synthesized experimentally. The N-Cu(Ⅱ) interaction plays an important role in the stability of 2. Because the delocalization of σFe-p→4SCu and σFe-c→πc-o weakens the a bonds of Fe-C and ~r bonds of CO, it is favorable for increasing the catalytic activity of binuclear complexes. Complexes 3 and 4 are expected to show higher catalytic activity compared to 2.  相似文献   

17.
H(35)Cl(v=0,J=0) molecules in a supersonic expansion were excited to the H(35)Cl(v=2,J=1,M=0) state with linearly polarized laser pulses at about 1.7 microm. These rotationally aligned J=1 molecules were then selectively photodissociated with a linearly polarized laser pulse at 220 nm after a time delay, and the velocity-dependent alignment of the (35)Cl((2)P(32)) photofragments was measured using 2+1 REMPI and time-of-flight mass spectrometry. The (35)Cl((2)P(32)) atoms are aligned by two mechanisms: (1) the time-dependent transfer of rotational polarization of the H(35)Cl(v=2,J=1,M=0) molecule to the (35)Cl((2)P(32)) nuclear spin [which is conserved during the photodissociation and thus contributes to the total (35)Cl((2)P(32)) photofragment atomic polarization] and (2) the alignment of the (35)Cl((2)P(32)) electronic polarization resulting from the photoexcitation and dissociation process. The total alignment of the (35)Cl((2)P(32)) photofragments from these two mechanisms was found to vary as a function of time delay between the excitation and the photolysis laser pulses, in agreement with theoretical predictions. We show that the alignment of the ground-state (35)Cl((2)P(32)) atoms, with respect to the photodissociation recoil direction, can be controlled optically. Potential applications include the study of alignment-dependent collision effects.  相似文献   

18.
A two-dimensional fluorescence (excitation/emission) spectrum of C2 produced in an acetylene discharge was used to identify and separate emission bands from the d (3)Pi(g)<--c (3)Sigma(u) (+) and d (3)Pi(g)<--a (3)Pi(u) excitations. Rotationally resolved excitation spectra of the (4<--1), (5<--1), (5<--2), and (7<--3) bands in the d (3)Pi(g)<--c (3)Sigma(u) (+) system of C2 were observed by laser-induced fluorescence spectroscopy. The molecular constants of each vibrational level, determined from rotational analysis, were used to calculate the spectroscopic constants of the c (3)Sigma(u) (+) state. The principal molecular constants for the c (3)Sigma(u) (+) state are B(e)=1.9319(19) cm(-1), alpha(e)=0.018 55(69) cm(-1), omega(e)=2061.9 cm(-1), omega(e)x(e)=14.84 cm(-1), and T(0)(c-a)=8662.925(3) cm(-1). We report also the first experimental observations of dispersed fluorescence from the d (3)Pi(g) state to the c (3)Sigma(u) (+) state, namely, d (3)Pi(g)(v=3)-->c (3)Sigma(u) (+)(v=0,1).  相似文献   

19.
Femtosecond time-resolved velocity map imaging experiments are reported on several vibronic levels of the second absorption band (B-band) of CH(3)I, including vibrational excitation in the ν(2) and ν(3) modes of the bound (3)R(1)(E) Rydberg state. Specific predissociation lifetimes have been determined for the 2(0)(1) and 3(0)(1) vibronic levels from measurements of time-resolved I*((2)P(1/2)) and CH(3) fragment images, parent decay, and photoelectron images obtained through both resonant and non-resonant multiphoton ionization. The results are compared with our previously reported predissociation lifetime measurements for the band origin 0(0) (0) [Gitzinger et al., J. Chem. Phys. 132, 234313 (2010)]. The result, previously reported in the literature, where vibrational excitation to the C-I stretching mode (ν(3)) of the CH(3)I (3)R(1)(E) Rydberg state yields a predissociation lifetime about four times slower than that corresponding to the vibrationless state, whereas predissociation is twice faster if the vibrational excitation is to the umbrella mode (ν(2)), is confirmed in the present experiments. In addition to the specific vibrational state lifetimes, which were found to be 0.85 ± 0.04 ps and 4.34 ± 0.13 ps for the 2(0)(1) and 3(0)(1) vibronic levels, respectively, the time evolution of the fragment anisotropy and the vibrational activity of the CH(3) fragment are presented. Additional striking results found in the present work are the evidence of ground state I((2)P(3/2)) fragment production when excitation is produced specifically to the 3(0)(1) vibronic level, which is attributed to predissociation via the A-band (1)Q(1) potential energy surface, and the indication of a fast adiabatic photodissociation process through the repulsive A-band (3)A(1)(4E) state, after direct absorption to this state, competing with absorption to the 3(0)(1) vibronic level of the (3)R(1)(E) Rydberg state of the B-band.  相似文献   

20.
The stepwise two-step two-color and three-step three-color laser excitation schemes are used for selective population of rovibronic levels of the first-tier ion-pair E0(g)(+) and D0(u)(+) states of molecular iodine and studies of non-adiabatic transitions to the D and E states induced by collisions with M = I(2)(X) and H(2)O. Collection and analysis of the luminescence after excitation of the v(E) = 8, 13 and v(D) = 13, 18 vibronic levels of the E and D states in the pure iodine vapor and the gas-phase mixtures with H(2)O provide rate constants for the non-adiabatic transitions to the D and E state induced by collisions with these molecules. Vibrational distributions for the [formula: see text] collision-induced non-adiabatic transitions (CINATs) are obtained. Rather strong λ(lum)(max) ≈ 3400 ? luminescence band is observed in the I(2) + H(2)O mixtures, whereas its intensity is ~100 times less in pure iodine vapor. Radiative lifetimes and quenching rate constants of the I(2)(E,v(E) = 8, 13 and D,v(D) = 13, 18) vibronic state are also determined. Rate constants of the [formula: see text], v(E) = 8-54, CINATs are measured again and compared with those obtained earlier. New data confirm resonance characters of the CINATs found in our laboratory about 10 years ago. Possible reasons of differences between rate constant values obtained in this and earlier works are discussed. It is shown, in particular, that differences in rate constants of non-resonant CINATs are due to admixture of water vapor in iodine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号