首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
石墨烯基纤维电容器的可控制备及应用   总被引:1,自引:1,他引:0  
聂肖威  陈南  李静  曲良体 《应用化学》2016,33(11):1234-1244
超级电容器又名电化学电容器,是一种绿色储能器件。 超级电容器的研究,从根本上讲是寻找比表面积大且可以被充分利用的电极材料。 石墨烯作为sp2杂化碳质材料的基元单位,具有独特的二维结构和优异的物化特性,使得其在超级电容器领域具有巨大的应用潜力,其中石墨烯纤维超级电容器受到了研究工作者越来越广泛的关注。 本文通过对一维石墨烯纤维的自组装以及与制备材料的共组装来作为超级电容器的电极材料,对其可控制备进行了系统的归纳和总结,可控构建独特的电极材料,使其性能得以优化,组装出高性能的超级电容器,并对相关领域的发展趋势做了展望。  相似文献   

2.
Crystallization behaviors of anatase nanocrystallites from an ultrathin two-dimensional reactant composed of exfoliated titania nanosheets have been studied by monitoring the heating process of their well-organized films, with which the film thickness can be controlled from a molecularly thin monolayer to a stacked multilayer structure with a stepwise increment of approximately 1 nm. The heated products were identified by means of total reflection fluorescence X-ray absorption near-edge structure analysis and in-plane X-ray diffraction measurements using a synchrotron radiation source. The films composed of five or more layers of stacked nanosheets were transformed into anatase at 400-500 degrees C, which is a normal crystallization temperature of anatase from bulk reactants. As the film became thinner by decreasing the number of nanosheet layers to five or less, the crystallization temperature was found to increase and finally reached 800 degrees C for the monolayer film. Interestingly, preferential growth of anatase along the c-axis was strongly promoted for these ultrathin films. These unusual behaviors may be understood in terms of crystallization from the two-dimensional system of scarcely distributed reactants. The titania nanosheet crystallite is much thinner than the unit cell dimensions of anatase, and therefore, extensive atomic diffusion is required for the transformation particularly for the ultrathin films with a critical number (2-3) of stacked nanosheet layers. There is some structural similarity between anatase and titania nanosheet, which may account for the oriented growth of anatase nanocrystallites.  相似文献   

3.
碳纳米管用作超级电容器电极材料   总被引:3,自引:0,他引:3  
碳纳米管由于具有化学稳定性好、比表面积大、导电性好和密度小等优点,是很有前景的超级电容器电极材料。本文介绍了碳纳米管用作超级电容器电极材料的研究现状,总结了单纯碳纳米管电极材料和碳纳米管复合物电极材料的特点与性能,并探讨了今后碳纳米管电极材料的发展方向。  相似文献   

4.
Due to ever-increasing global energy demands and dwindling resources, there is a growing need to develop materials that can fulfil the World's pressing energy requirements. Electrochemical energy storage devices have gained significant interest due to their exceptional storage properties, where the electrode material is a crucial determinant of device performance. Hence, it is essential to develop 3-D hierarchical materials at low cost with precisely controlled porosity and composition to achieve high energy storage capabilities. After presenting the brief updates on porous carbons (PCs), then this review will focus on the nitrogen (N) doped porous carbon materials (NPC) for electrochemical supercapacitors as the NPCs play a vital role in supercapacitor applications in the field of energy storage. Therefore, this review highlights recent advances in NPCs, including developments in the synthesis of NPCs that have created new methods for controlling their morphology, composition, and pore structure, which can significantly enhance their electrochemical performance. The investigated N-doped materials a wide range of specific surface areas, ranging from 181.5 to 3709 m2 g−1, signifies a substantial increase in the available electrochemically active surface area, which is crucial for efficient energy storage. Moreover, these materials display notable specific capacitance values, ranging from 58.7 to 754.4 F g−1, highlighting their remarkable capability to effectively store electrical energy. The outstanding electrochemical performance of these materials is attributed to the synergy between heteroatoms, particularly N, and the carbon framework in N-doped porous carbons. This synergy brings about several beneficial effects including, enhanced pseudo-capacitance, improved electrical conductivity, and increased electrochemically active surface area. As a result, these materials emerge as promising candidates for high-performance supercapacitor electrodes. The challenges and outlook in NPCs for supercapacitor applications are also presented. Overall, this review will provide valuable insights for researchers in electrochemical energy storage and offers a basis for fabricating highly effective and feasible supercapacitor electrodes.  相似文献   

5.
We have characterized symmetric solid-state supercapacitors in swagelok cells using film electrodes made of novel hybrid materials based on multiwalled carbon nanotubes (CNT) and phosphomolybdate polyanion (Cs-PMo12) with PVA as binder. These hybrid materials were carried out by Cs-PMo12 adhesion onto previously functionalized CNT, in order to disperse both components at a molecular level and use Cs-PMo12 as energy density enhancer in supercapacitor cells. Our results show high capacitance values (up to 285 F/g at I = 200 mA/g) due to the contribution of Cs-PMo12, which was revealed on the higher energy density values compared to pure CNT electrodes. Additionally, good stability was observed during 500 charge–discharge cycles for most hybrid electrodes. These preliminary results show a new approach to enhance energy density of double layer supercapacitor cells through the introduction of Cs-PMo12, whereas from a material science point of view these materials are innovative, and open the way to search for diverse applications aside from supercapacitors (sensors, catalysts, photovoltaic cells, etc.).  相似文献   

6.
Pliable supercapacitor, yielding specific capacitance (Cs) and energy density as high as 348 F g−1 and 48.3 Wh Kg−1 respectively was fabricated using modified activated carbon electrodes. The nanospheres of activated carbon (AC) were anchored on the nanoplates of boron nitride (BN) by employing the facile technique of pulsed laser ablation in liquid (PLAL) using 532 nm focused laser beam. Four different variants of electrode materials were synthesized by varying the weight percentage (1%, 3%, 5% and 10%) of BN in AC in the PLAL precursor solution. The morphological characteristics, the elemental composition and the structural analysis of the synthesized electrode materials were studied respectively by FESEM, XPS and XRD. The morphological studies indicated that the PLAL synthesis of the electrode materials resulted in proper intercalation of carbon nanospheres into BN nanoplates, which resulted in the observed enhanced performance of the fabricated supercapacitor. Four supercapacitors in this work were fabricated using the four variants of synthesized electrode materials in conjunction with gel polymer electrolyte (GPE). GPE are well known for their non-corrosive nature and best sealing ability to avoid any leakage that results in increasing the cycle life of the device. The performance of the fabricated supercapacitors was evaluated using cyclic voltammetry (CV), galvanostatic charge discharge (GCD) measurement and electrochemical impedance spectroscopy (EIS). The results indicate that the supercapacitor fabricated using 3% BN in AC as electrode material manifested the best specific capacitance and energy density. Also it was found that the supercapacitor maintained 85% of its initial capacitance even after 5000 charge/discharge cycles.  相似文献   

7.
Adsorption and subsequent polymerization of nickel(II) complexes with Schiff bases were studied in a porous carbon material used to manufacture electric double-layer capacitors (supercapacitors). The optimal modification conditions of the carbon material with polymeric complexes to obtain the maximum effect as regards the accumulation of electric energy in the supercapacitor were determined and substantiated. An effective and cost-efficient technique for modification of supercapacitor electrodes with electrically active polymers was suggested.  相似文献   

8.
Nanostructured carbon materials for supercapacitor electrodes, produced by short-pulse laser treatment of a polyimide film in argon with a fiber-optic ytterbium laser, were studied. Owing to the high power density, there occurred an optical breakdown of the polyimide film and its material was destructed to give nanocrystalline graphite. The thus synthesized nanostructured carbon was used as an active electrode material for supercapacitors. The results obtained in measurements of their functional characteristics demonstrated that the materials being synthesized are highly promising.  相似文献   

9.
现如今世界正面临着与能源相关的一系列问题与挑战,科学家们致力于研究绿色高性能的能量存储器件以适应当前乃至以后长久可持续创新发展的需要。超级电容器作为一种新型的绿色能源储存装置,具有功率密度大、理论比电容高、充放电速度快、循环寿命长、安全性高、环境友好且经济等优点,为人类解决能源危机提出了可能。电极材料是影响超级电容器性能的重要因素。近些年,由于二氧化锰基超级电容器具有理论比电容高、化学稳定性好、环境友好等特点被广泛研究。同时多种二维材料也继石墨烯后被相继用作超级电容器电极材料,具有二维结构特征材料在提高双电层电容器的能量密度、改善赝电容电容器方面发挥着重要作用。实现高比电容和高倍率性能,将二氧化锰与二维材料复合将不失为一个有前景的选择。本文系统介绍了以石墨烯为代表的各类二维材料与二氧化锰复合物在超级电容器中的应用研究,并聚焦于这些二维材料与二氧化锰复合后所展现的优异电化学性能。  相似文献   

10.
《中国化学快报》2020,31(9):2325-2329
As electrodes, two-dimensional materials show special advantages including the infinite planar lengths, broad electrochemical window, large surface–volume ratio, and much exposed active sites. In theory, the two-dimensional materials consist of the elements with high electronegativity may absorb more Na atoms, resulting in a high battery storage capacity. Based on the above idea, we selected the two dimensional metallic PS2 with 1T-Type structure as an anode material, and explored its potential applications as an electrode material for Na-ion battery through first-principle calculations. As we expected, when two dimensional PS2 is used as an anode in Na-ion battery, it can adsorb maximum three layers of sodium atoms on both sides of the monolayer, resulting in a maximum theoretical capacity of 1692 mAh/g. Furthermore, it also possesses a rather small sodium diffusion barrier of 0.17 eV, a low average open-circuit voltage of 0.18 V, and a relatively small lattice changes within 13% during the intercalation of Na. These results suggested that the two dimensional PS2 is a potentially excellent Na-ion battery anode. Our idea of designing two-dimensional anode materials with high storage capacity may provide some references for designing the next generation anode materials of metal-ion batteries.  相似文献   

11.
超级电容器作为一种新型的能源存储装置,因为其比容量大、充放电速度快、循环寿命长等优点,在储能领域引起了极为广泛的关注。电极材料是决定超级电容器性能的核心因素,其中,常用的超级电容器电极材料主要有如下三类:碳基材料、金属氧化物及氢氧化物材料和导电聚合物材料。本文综述了超级电容器的工作原理并详细介绍了基于碳材料及其二元、三元复合体系的电极材料的研究进展。  相似文献   

12.
This paper addresses the question: “How do we define a two-dimensional itinerant magnet?” Results are presented indicating a cross-over from three-dimensional (3D) to two-dimensional (2D) behavior at a finite-size film thickness. It is argued that quantization of the electronic states in ultrathin metallic films dictate this behavior. Data from a broad range of epitaxial ferromagnetic films grown on different metallic substrates suggest a cross-over into just two classes of 2D behavior, viz 2D Ising model in the presence of uniaxial surface anisotropy and finite-size lattice 2D XY model behavior in films in which the preferred direction of magnetization lies in-plane. In this ultrathin film 2D limit, the Curie temperature falls rapidly to zero as the thickness approaches a single monolayer due to the sudden onset of disordered microdomains.  相似文献   

13.
In this work, stabilized Al-substituted α-Ni(OH)2 materials were successfully synthesized by a chemical coprecipitation method. The experimental results showed that the 7.5% Al-substituted α-Ni(OH)2 materials exhibited high specific capacitance (2.08?×?103 F/g) and excellent rate capability due to the high stability of Al-substituted α-Ni(OH)2 structures in alkaline media, suggesting its potential application in electrode material for supercapacitors. To enhance energy density, an asymmetric type pseudo/electric double-layer capacitor was considered where α-Ni(OH)2 materials and activated carbon act as the positive and negative electrodes, respectively. Values for the maximum specific capacitance of 127 F/g and specific energy of 42 W·h/kg were demonstrated for a cell voltage between 0.4 and 1.6 V. By using the α-Ni(OH)2 electrode, the asymmetric supercapacitor exhibited high energy density and stable power characteristics. The hybrid supercapacitor also exhibited a good electrochemical stability with 82% of the initial capacitance over consecutive 1,000 cycle numbers.  相似文献   

14.
Stretchable supercapacitors that can sustain their performance under unpredictable tensile force are important elements for practical applications of various portable and wearable electronics. However, the stretchability of most reported supercapacitors was often lower than 100 % because of the limitation of the electrodes used. Herein we developed all‐solid‐state supercapacitors with a stretchability as high as 240 % by using aligned carbon nanotube composites with compact structure as electrodes. By combined with pseudocapacitive molybdenum disulfide nanosheets, the newly developed supercapacitor showed a specific capacitance of 13.16 F cm?3, and also showed excellent cycling retention (98 %) after 10 000 charge–discharge cycles. This work also presents a general and effective approach in developing high‐performance electrodes for flexible and stretchable electronics.  相似文献   

15.
功率密度高、倍率性能优异和循环性能好等特性使得超级电容器在储能领域显示了巨大的应用前景。尽管二维层状材料剥离形成的纳米片层不仅可为电化学反应提供独特的纳米级反应空间,而且由其组装的层状纳米电极材料具有化学和结构上的氧化还原可逆性及纳米片层水平方向上离子或电子快速传输通道。但是,纳米片层组装电极材料在纳米片层垂直方向上离子或电子传输存在障碍,对于超级电容器功率密度和能量密度的提高及实现快速能量储存非常不利。因此,如何通过改善离子或电子的快速传输,实现超级电容器大功率密度下的高能量密度是超级电容器电极材料发展的方向之一。本文主要综述了二维层状材料剥离成纳米片层,纳米片层孔洞化策略及组装孔洞化材料在超级电容器电极材料中的应用。纳米层孔洞化技术是改善层状电极材料在纳米片层垂直方向离子或电子传输的有效手段,为实现高比电容下的高倍率性能超级电容器电极材料制备提供了方法学。最后,对开发大功率密度下的高能量密度超级电容器电极材料提出了展望。  相似文献   

16.
Polyaniline (PANI) has piqued the interest of nanotechnology researchers due to its potential as an electrode material for supercapacitors. Despite its ease of synthesis and ability to be doped with a wide range of materials, PANI′s poor mechanical properties have limited its use in practical applications. To address this issue, researchers investigated using PANI composites with materials with highly specific surface areas, active sites, porous architectures, and high conductivity. The resulting composite materials have improved energy storage performance, making them promising electrode materials for supercapacitors. Here, we provide an overview of recent developments in PANI-based supercapacitors, focusing on using electrochemically active carbon and redox-active materials as composites. We discuss challenges and opportunities of synthesizing PANI-based composites for supercapacitor applications. Furthermore, we provide theoretical insights into the electrical properties of PANI composites and their potential as active electrode materials. The need for this review stems from the growing interest in PANI-based composites to improve supercapacitor performance. By examining recent progress in this field, we provide a comprehensive overview of the current state-of-the-art and potential of PANI-based composites for supercapacitor applications. This review adds value by highlighting challenges and opportunities associated with synthesizing and utilizing PANI-based composites, thereby guiding future research directions.  相似文献   

17.
《印度化学会志》2023,100(1):100817
Supercapacitors are high energy density and power density materials in the electronics industry. Noble metals and their composites have been the most successfully applied in supercapacitors. This review is focused on noble metal-based materials that have been used to improve electrochemical supercapacitors over the last decade. This review describes the role of various noble metals, binary composites with transition metals, binary composites with carbon-based materials, and ternary composites containing both transition metals and carbon-based materials as supercapacitor electrode materials. The effects of the electrode material, growth tactics, structure, size and morphology of the nanostructured materials on device performance are discussed.  相似文献   

18.
In the design and development of energy storage devices, two main factors are considered first high electrochemical performances and second low-cost materials. Phosphorus owns excellent properties such as high carrier mobility, tunable bandgap, anisotropic electronic properties, hydrophilicity, biocompatibility, good electrochemical activity, and high surface area. The interlayer distance of black phosphorus (BP) (0.55 nm) is higher than that of graphene which makes facile ion transportation for supercapacitor application. The phosphorus-based electrode obtained with top-down approaches such as exfoliation and bottom-up approach such as pulsed laser deposition. The BP has been investigated due to its small electronegativity of P which is beneficial to improve the electrical conductivity of the electrode and its abundance nature makes it a desirable candidate for the fabrication of low-cost device. Hence, this review covers the new BP material as the advanced materials for the commercial realization of advanced supercapacitors. This is the first review on phosphorus integrated supercapacitor devices. This review will give a brief idea about BP to researchers in search of outstanding supercapacitor configurations with different electrodes and electrolytes.  相似文献   

19.
超级电容器最大的优点是具有优良的脉冲充放电性能和快速充放电性能,同时具有循环寿命长、工作温度范围宽、安全无污染等特性,但能量密度较低. 本文对超级电容器的工作原理、发展状况、缺陷所在和改进方法进行了简要介绍,以本课题组在高比能超级电容器方面的研究工作为主线,结合近几年的文献报道,重点阐述了超级电容器能量密度的提升策略. 主要围绕以下三个方面开展了工作:1)通过将电极材料尺寸纳米化来提高传统电极材料的比容量或开发其他高比容量的电极材料;2)发展具有高电压窗口的离子液体电解液,或利用不同材料在不同电位区间的电容特性构筑不对称电容器,从而提高超级电容器的电压窗口;3)将超级电容器和锂离子电池进行“内部交叉”构筑兼具高能量密度和高功率密度的锂离子混合电容器. 最后,对超级电容器的发展进行了展望.  相似文献   

20.
以涂敷在碳布基体上的金属有机骨架多孔材料HKUST-1为硬模板,使用单极脉冲法沉积聚苯胺制备了具有电活性的多孔复合电极Micro-PANI/CC,同时以空白碳布(Carbon Cloth,CC)为基体制备了聚苯胺电极PANI/CC,并研究、比较了它们的电化学电容器性能. 使用XRD、SEM分析了所得电极的结构,结果显示电极Micro-PANI/CC表面具有大量的纳米孔状结构. 在0.5 mol·L-1硫酸为电解液的体系中测试了循环伏安、恒电流充放电、阻抗以及稳定性等特性,在扫速为2 mV·s-1 时,电极Micro-PANI/CC和PANI/CC的比电容分别为895.6 F·g-1和547.6 F·g-1,在其它测试条件相同的情况下,前者的比电容保持在后者的1.64倍以上,且具有更好的倍率特性、更低的电阻和较好的稳定性等特点,说明这种以HKUST-1为模板形成的多孔聚苯胺更适于超级电容器电极材料.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号