首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe a search for the time reversal non-invariant five-fold correlation (s·Ixk)(I·k) in the scattering of 2 MeV polarized neutrons from an aligned165Ho target. Here s is the neutron spin,I is the target spin, andk is the neutron momentum vector. Differences in transmission were sought when s was reversed. The target was a single crystal of holmium, cryogenically aligned with a specially built dilution refrigerator. Rotating the target axis of alignment while cold permits the parity-even, five-fold correlation to be identified among other spin-dependent correlations in the forward elastic scattering amplitude. An analyzing power was found to be (1±6)×10−4, consistent with time reversal invariance.We obtain a bound of 5×10−3 for αT, the ratio of T-odd to T-even couplings in the effective nucleon-nucleon interaction.  相似文献   

2.
Parity non-conserving (PNC) effects can be studied with unpolarized neutron beams and polarized targets. TheI·k term in the forward scattering amplitude (I=target spin, k=neutron momentum) is enhanced at a p-wave resonance in the same way as thes·k term which has been studied in previous experiments (s=neutron spin). A large number of resonances can be studied in a polarized target experiment because level densities are high in odd-odd nuclei (typically 25 s and p levels per 100 eV in166Ho). The goal of the experiments is to extract an average PNC matrix element from a statistically distributed set of PNC matrix elements. A rotating cryostat for use in longitudinal analyzing power measurements is described. Suitable rare earth targets are holmium, thulium, terbium and hyperfine enhanced targets such as praesodymium compounds.  相似文献   

3.
A pronounced step-like (kink) behavior in the temperature dependence of resistivity ρ(T) is observed in the optimally doped Sm1.85Ce0.15CuO4 thin films around T sf = 87 K and attributed to the manifestation of strong-spin fluctuations induced by Sm3+ moments with the energy ħωsf = k B T sf ≃ 7 meV. The experimental data are found to be well fitted by the residual (zero-temperature) ρres, electron-phonon ρe-ph(T) = AT, and electron-electron ρe-e(T) = BT 2 contributions in addition to the fluctuation-induced contribution ρsf(T) due to thermal broadening effects (of the width ωsf). According to the best fit, the plasmon frequency, impurity scattering rate, electron-phonon coupling constant, and Fermi energy are estimated as ωp = 2.1 meV, τ 0 −1 = 9.5 × 10−14 s−1, λ = 1.2, and E F = 0.2 eV, respectively. The text was submitted by the authors in English.  相似文献   

4.
Study of the T-odd three-vector correlation in the emission of prompt neutrons from 235U fission by polarized cold neutrons has been continued at the facility MEPHISTO of the FRM II reactor (Technical University of Munich). The sought correlation was not found within experimental error of 2.3 × 10−5. The upper limit for the asymmetry coefficient has been set to |D n | < 6 × 10−5 at 99% confidence level, whereas for ternary fission correlation coefficient D α = (170±20) × 10−5. This limit casts doubt on a model that explains the three-vector correlation in ternary fission by the Coriolis mechanism. At the same time, five-vector correlation in the emission of prompt fission neutrons has been measured, which describes the rotation of the fissioning nucleus at the moment it breaks (ROT effect). At the angle 22.5° to the fission axis, the correlation coefficient was found to be (1.57 ± 0.20) × 10−4, while at the angle of 67.5° it is zero within the experimental uncertainty. The existence of ROT effect in the emission of prompt fission neutrons can be explained by the anisotropy of neutron emission in the rest frame of the fragment (fission fragments are aligned with respect to the axis of deformation of the fissioning nucleus), similar to the mechanism of ROT effect in the emission of prompt γ-rays.  相似文献   

5.
T-odd asymmetries in the angular distributions of evaporation neutrons emitted by thermalized fission fragments in the fission of axially symmetric deformed nuclei by cold polarized neutrons are investigated within the quantum theory of fission. The asymmetries in question are due to the anisotropy of angular distributions of evaporation neutrons in the center-of-mass systems of the fission fragments, and this anisotropy arises from the orientation of large-value fission fragment spins in the direction perpendicular to the direction K 0 of the symmetry axis of the fissioning nucleus at the time of its scission, caused by zero wriggling vibrations of the fissioning nucleus. The angle of rotation of the vector k 0 with respect to the asymptotic direction k 0 of the fissioning nucleus symmetry axis is calculated with allowance for the interference of fission amplitudes of neutron resonances excited in a fissioning nucleus as it captures an incident neutron. It is shown that the T-odd asymmetry coefficient for evaporation neutrons is close in structure and value to the analogous coefficient for evaporation γ-rays.  相似文献   

6.
An experiment to measure energetic neutrons and gamma rays in space was launched in the first Indian scientific satellite,Aryobhata, on April 19, 1975. From this experiment, the first measurements in space of the Earth’s albedo fiux of neutrons of energy between 20 and 500 MeV have been made; the values obtained for two mean geomagnetic vertical cut-off rigidities of 5.6 and 17.0 GV are (6.3±0.4)×10−2 and (1.4±0.3)×10−2 neutrons cm−2 sec−1 respectively. These measurements confirm that protons arising from cosmic ray albedo neutron decay, can adequately account for the protons in the inner radiation belt. Observations on gamma rays of energy between 0.2 and 24 MeV have enabled the determination of the total background gamma ray flux in space as a function of latitude. This in turn has permitted useful information on the diffuse cosmic gamma rays. We have also observed four events that showed sudden increases in the gamma ray counting rates between 0.2 and 4.0 MeV. Observational details of these events are given.  相似文献   

7.
The specific features of the crystal structure and the magnetic state of stoichiometric lithium manganite in the structurally ordered Li[Mn2]O4 and disordered Li1 − δMnδ[Mn2 − δLiδ]O4 (δ = 1/6) states have been investigated using neutron diffraction, X-ray diffraction, and magnetic methods. The structurally disordered state of the manganite was achieved under irradiation by fast neutrons (E eff ≥ 1 MeV) with a fluence of 2 × 1020 cm−2 at a temperature of 340 K. It has been demonstrated that, in the initial sample, the charge ordering of manganese ions of different valences arises at room temperature, which is accompanied by orthorhombic distortions of the cubic spinel structure, and the long-range antiferromagnetic order with the wave vector k = 2π/c(0, 0, 0.44) is observed at low temperatures. It has been established that the structural disordering leads to radical changes in the structural and magnetic states of the LiMn2O4 manganite. The charge ordering is destroyed, and the structure retains the cubic symmetry even at a temperature of 5 K. The antiferromagnetic type of ordering transforms into ferrimagnetic ordering with local spin deviations in the octahedral sublattice due to the appearance of intersublattice exchange interactions.  相似文献   

8.
The connection of short-term neutron bursts near sea level with the electric and geomagnetic atmospheric fields during thunderstorms in 2009–2011 has been experimentally studied. The data from the cosmic-ray spectrograph named after Kuzmin, an electrostatic fluxmeter, and a three-component fluxgate magnetometer in Yakutsk have been analyzed. It has been shown that short-term (no longer than 4 min) neutron bursts are due to negative lightning discharges. The bursts are detected at the ground level 1–3 km below thunderstorm clouds. In this case, the neutron flux is about 4 × 10−3 cm−2 s−1. The minimum energy of the neutrons that are efficiently detected by the monitor is about 10 MeV. It has been found that short-term neutron bursts are detected when the electric field strength reaches a threshold value of −16 kV/m.  相似文献   

9.
A magnetic phase transition in carbon-doped (0.1 and 0.7 at. %) Fe70Ni30 Invar alloys was investigated by the method of depolarization of a transmitted neutron beam and by small-angle scattering of polarized neutrons. It is shown that for both alloys, two characteristic length scales of magnetic correlations coexist above T c. Small-angle scattering by critical correlations with radius R c is described well by the Ornstein-Zernike (OZ) expression. The longer-scale (second) correlations, whose size can be estimated from depolarization data, are not described by the OZ expression, and hypothetically can be modeled by a squared OZ expression, which in coordinate space corresponds to the relation 〈M(r)M(0)〉∝exp(−r/R d), where R d is the correlation length of the second scale. The temperature dependence of the correlation radius R c was obtained: R c ∝ ((TT c)/Tc)ν , where ν≈2/3 is the critical exponent for ferromagnets, over a wide temperature range up to T c exp , at which the correlation radius becomes constant and equals its maximum value R c(T c)=R c max . The maximum correlation radius established (R c max =140 Å and 230 Å for the first and second alloys, respectively) characterizes the length-scale of the fluctuation for which the appearance of critical correlations first results in the formation of a ferromagnetic phase, and the phenomenon itself exhibits a “disruption” of the second-order phase transition at T=T c exp , as a result of which a first-order transition arises. Temperature hysteresis was also detected in the measured polarization of the transmitted beam and intensity of small-angle neutron scattering in the alloy above T c, confirming the character of this magnetic transition as a first-order transition close to a second-order transition. Zh. éksp. Teor. Fiz. 112, 2134–2155 (December 1997)  相似文献   

10.
A new measurement ofΔσ T for polarized neutrons transmitted through a polarized proton target at 16.2 MeV has been made. A polarized neutron beam was produced with the3H(d, n)4 He reaction; proton polarization over 90% was achieved in a frozen spin target of 20 cm3 volume. The measurement yields the valueΔσ T=(?126±21±14) mb. The result of a simple phase shift analysis for the3 S 1?3 D 1 mixing parameter ε1 is presented and compared with the theoretical potential model predictions.  相似文献   

11.
The Ni2 + x Mn1 − x Ga magnetic shape memory alloys at concentrations x = 0.18–0.36 have been studied using small-angle polarized neutron scattering in magnetic fields 0 < H ≤ 5.7 kOe. In this concentration range, the alloy undergoes a coupled magnetic-structural phase transition. At x < 0.18, the martensitic phase transition occurs, as usual, in the ferromagnetic state, i.e., T m < T C (T m and T C are the temperatures of the martensitic and magnetic phase transitions, respectively). However, at x > 0.27, the relationship between the characteristic temperatures is changed, i.e., T m > T C. The small-angle polarized neutron scattering data indicate that, in the concentration range under investigation, there occurs a complex transformation of the magnetic and atomic structures. All phase transitions exhibit a temperature hysteresis of scattering and polarization, which is characteristic of first-order phase transitions. A comparative analysis of the mesoscopic structures of the Ni2 + x Mn1 − x Ga and Ni2 + x + y Mn1 − x Ga1 − y alloys studied using the small-angle polarized neutron scattering technique has been carried out.  相似文献   

12.
The results from measurements of thermal neutron flux in the EDELWEISS II experiment aimed at the direct detection of WIMPs (weakly interacting massive particles) by means of cryogenic germanium bolometers are described. Detailed knowledge of the neutron background is of crucial importance for the experiment, since neutrons with the MeV energy range of scattering seem to be hard to distinguish from the expected WIMP signal within the bolometers. Monitoring of the thermal neutron flux is performed using a mobile detection system with a low background proportional 3He counter. The neutron flux measurements were performed both outside and inside the device’s shielding, in the direct proximity of a cryostat with built-in germanium detectors. The sensitivity of the created thermal neutron detection system is on the level of 10−9 neutron (cm2 s)−1.  相似文献   

13.
The electric form factor of the neutron GEn has been determined in double polarized exclusive 3 He(e,e'n) scattering in quasi–elastic kinematics by measuring asymmetries A , A of the cross section with respect to helicity reversal of the electron, with the nuclear spin being oriented perpendicular to the momentum transfer q in case of A and parallel in case of A. The experiment was performed at the 855 MeV c. w. microtron MAMI at Mainz. The degree of polarization of the electron beam and of the gaseous 3 He target were each about 50%. Scattered electrons and neutrons were detected in coincidence by detector arrays covering large solid angles. Quasi–elastic scattering events were reconstructed from the measured electron scattering angles ϑe, φe and the neutron momentum vector p n in the plane wave impulse approximation. We obtain the result <G En>(0.27 < Q2c2/GeV2 < 0.5)= 0.0334 ± 0.0033stat± 0.0028syst which is averaged over the indicated range of Q 2, the squared momentum transfer. This G En value is significantly smaller than measured from the D(e,e'n) reaction under similar kinematical conditions. To what extent final state interactions in 3He quench the G En result is subject of calculations currently in progress elsewhere. Received: 29 April 1999  相似文献   

14.
14 MeV Fast neutrons has good penetrability and the 14 MeV fast neutron radiography can meet the need of Non-Destructive Test of the structure and lacuna of heavy-massive sample, whose shell is made of heavy metal and in which there are some hydrogen materials, and the study of fast neutron digital radiography just begins in China. By the use of a D-T accelerator, a digital imaging system made up of a fast neutron scintillation screen made of ZnS(Ag) and polypropylene, lens and a scientific grade CCD, the experimental study of fast neutron radiography has been done between 4.3×1010−6.8×1010 n/s of neutron yield. Some 14 MeV fast neutron digital radiographs have been gotten. According to experimental radiographs and their data, the performance of the fast neutron scintillation screen and the basic characters of 14 MeV fast neutron radiography are analyzed, and it is helpful for the further research. Supported by the Science and Technology Fund of China Academy of Engineering Physics (Grant No. 251)  相似文献   

15.
A strong increase of the absorption coefficient with photon energy increasing from 0.1 to 1.0 eV is observed in the spectra of CuO single crystals irradiated with neutrons to a fluence of 5×1018 cm−2. The difference of the absorption coefficients before and after irradiation depends on the wavelength as λ−2. The effect of neutron irradiation on CuO is qualitatively similar to that of neutrons on other semiconductors (for example, GaAs) and differs from that obtained by irradiating CuO with charged particles. Zh. Tekh. Fiz. 69, 98–99 (December 1999)  相似文献   

16.
154Ho was studied via141Pr(16O,3n) reaction at beam energy of 75 MeV. We found two new rotationally aligned bands made of neutron h9/2 and f7/2 orbitals coupled to a proton h11/2 orbital. As with several new high-spin states, up to I=20, the ground state band with odd parity starts to show anomalous signature splitting at I=13 in this doubly odd154Ho. The observed rotational bands in154Ho are quite consistent with the onset of collectivity which appears in general at neutron number of 87 in neutron-deficient rare-earth nuclei.  相似文献   

17.
The lowest momentum at which the total scattering cross-section data are available for Σ+ p and Σ p scattering is 145 MeV/c and 142.5 MeV/c respectively. Thus extracting low energy parameters amounts to extrapolating the data to still lower energies. Using the analytic structure of foward scattering amplitude to advantage a parameterization of theσ T is presented which is hoped to be more reliable and stable for deriving results through extrapolation. The scattering lengths and effective ranges for the Σ+ p and Σ p are also estimated.  相似文献   

18.
The chiral-odd generalized parton distribution (GPD), or transversity GPD, of the nucleon can be accessed experimentally through the photoproduction or electroproduction of two vector mesons on a polarized nucleon target, γ(*)N→ρ1ρ2N’, where ρ1 is produced at large transverse momentum, ρ2 is transversely polarized, and the mesons are separated by a large rapidity gap. We predict the cross section for this process for both transverse and longitudinal ρ2 production. To this end, we propose a model for the transversity GPD HT(x,ξ,t) and give an estimate of the relative sizes of the transverse and longitudinal ρ2 cross sections. We show that a dedicated experiment at high energy should be able to measure the transversity content of the proton.  相似文献   

19.
A series of experiments has been conducted at the Frank Laboratory of Neutron Physics (FLNP) of the Joint Institute for Nuclear Research (JINR) in order to study the possibility of determining the moisture content of coke using a standard neutron source. The proposed method is based on a measurement of the spectrum of prompt γ rays emitted when samples are irradiated by fast and/or thermal neutrons. The moisture content is determined from the area of the peaks of characteristic γ rays produced in the radiative capture of thermal neutrons by the proton (Eγ = 2.223 MeV) and inelastic scattering of fast neutrons by 16O (Eγ = 6.109 MeV). The 239Pu–Be neutron source (〈E n 〉 ~ 4.5 MeV) with an intensity of ~5 × 106 n/s was used to irradiate the samples under study. A scintillation detector based on a BGO crystal was used to register the characteristic γ radiation from the inelastic fast neutron scattering and slow (thermal) neutron capture. This paper presents the results of humidity measurement in the range of 2–50% [1, 2].  相似文献   

20.
We combine the results from muon spin relaxation (μSR) and neutron scattering measurements performed on the same specimen (or system) of magnetic materials. The example on a spin glassCuMn (5%) shows that the two techniques have complementary time windows for studying dynamic spin fluctuations. In combining the results, one should note that muons and neutrons probe dynamic phenomena with different wavevectors. The results on antiferromagnetic La2CuO4−y illustrate the difference in the spatial range of static spin correlations reflected in the μSR precession frequency and the neutron Bragg peak intensity. With the examples of CeCu2.1Si2, YBa2Cu3Ox and Bi2Sr2YCu2O8+y , we point out that μSR is a superb tool for discovering static magnetic order while neutron scattering is the unique method to determine the spin structure. We emphasize that it is very fruitful to perform μSR and neutron experiments on the same specimen and to compare and combine the results for the better understanding of magnetism of various system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号