首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper describes the liquid-phase microextraction (LPME) of tributyltin (TBT) and triphenyltin coupled with gas chromatography-tandem mass spectrometry. The 4-fluorophenylation and ethylation reactions were used for the derivatization of the organotins. For the two derivatizations, the LPME parameters such as organic solvent, stirring rate, temperature, extraction time and the other additional conditions were examined. Using pure water, the calibration curves, method detection limits (MDLs) and reproducibilities (RSDs) of the two derivatizations were compared under the respective optimized procedures. The 4-fluorophenyl derivatization, which showed a lower MDL (0.36 ng/l) and better reproducibility (RSD = 11% at 10 ng/l) for TBT, was applied to the analysis of seawater. The TBT was detected in the range from 1.1 to 2.0 ng/l in the seawater samples collected in Osaka Bay.  相似文献   

2.
Hydrophilic interaction liquid chromatography (HILIC)–electrospray ionization-mass spectrometry (ESI-MS) was evaluated for the analysis of tributyltin (TBT) and triphenyltin (TPT) in water samples. Separation was performed in isocratic mode on an Atlantis HILIC silica (2.1 mm × 150 mm, 5 μm) column with a mobile phase of acetonitrile–0.1% aqueous HCOOH (86:14, v/v) at a flow rate of 0.2 mL/min. Under optimum conditions, limits of detection for TBT and TPT were 10 and 20 pg injected onto the column, respectively. The extraction of triorganotin compounds from seawater samples was carried out using a polymer-based solid phase extraction cartridge of mixed modes with reversed-phase and weak anion exchange. Tributyltin-d27 chloride and triphenyltin-d15 chloride were used as internal standards. The relative standard deviations for the analysis were less than 4%. Using the proposed method, it was possible to analyze concentrations of TPT and TBT in seawater at ppt levels.  相似文献   

3.
A method for the determination of organotin compounds (monobutyl = MBT, dibutyl = DBT, and tributyltin = TBT) in marine sediments by headspace Solid Phase Microextraction (SPME) has been developed. The analytical procedure involved 1) extraction of TBT, DBT and MBT from sediments with HCl and methanol mixture, 2) in situ derivatization with sodium tetraethylborate and 3) headspace SPME extraction using a fiber coated with poly(dimethylsiloxane). The derivatized organotin compounds were desorbed into the splitless injector and simultaneously analyzed by gas chromatography - mass spectrometry. The analytical method was optimized with respect to derivatization reaction and extraction conditions. The detection limits obtained for MBT, DBT and TBT ranged from 730 to 969 pg/g as Sn dry weight. Linear calibration curves were obtained for all analytes in the range of 30-1000 ng/L as Sn. Analysis of a standard reference sediment (CRM 462) demonstrates the suitability of this method for the determination of butyltin compounds in marine sediments. The application to the determination of TBT, DBT and MBT in a coastal marine sediment is shown.  相似文献   

4.
Uwakai of Japan is famous for pearl and yellowtail fish culture. Recently, pearl culture farming in that region has suffered from a low production of pearls. An illegal use of organotin antifouling paints on fishing nets was reported. In the line of pollution studies, thus, the present investigation was carried out to examine the contamination status and fate of organotin compounds. Totally, 23 water, 10 sediment and 8 pearl oyster tissue samples were analyzed for tributyltin (TBT), triphenyltin (TPT), and their breakdown products (di- and mono compounds) by gas chromatography combined with inductively coupled plasma mass spectrometry (GC/ICP-MS). The results show that the TBT concentrations in water, sediment and biota were in the range from 0.11 to 10.6 ng Sn l(-1), 0.35 to 2500 ng Sn g(-1), and 50.4 to 181 ng Sn g(-1), respectively. The values for sediment and biota are expressed on the dry-weight basis. Triphenyltin in water, sediment and biota were in the range from 0.009 to 0.108 ng l(-1), non-detect to 12.7 ng g(-1), and non-detect to 6.83 ng g(-1), respectively. Although the TBT concentration in seawater is below the tentative assessment level of 10 ng l(-1) set by the Japanese Environment Agency in 1992, it may cause endocrine disruption/other effects in aquatic organisms. Octyltin compounds (mono-, di- and trioctyltin) were also quantified in seawater and sediment. The detection of dibutyldimethyltin (DBDMT) and tributylmonomethyltin (TBMMT) in sediment (methylated butyltins comprised 2.8-31% of total butyltins), and TBMMT in seawater suggested that biomethylation of anthropogenic tributyltins is a significant transformation pathway in the coastal environment.  相似文献   

5.
A method for the determination of organotin compounds (monobutyl = MBT, dibutyl = DBT, and tributyltin = TBT) in marine sediments by headspace Solid Phase Microextraction (SPME) has been developed. The analytical procedure involved 1) extraction of TBT, DBT and MBT from sediments with HCl and methanol mixture, 2) in situ derivatization with sodium tetraethylborate and 3) headspace SPME extraction using a fiber coated with poly(dimethylsiloxane). The derivatized organotin compounds were desorbed into the splitless injector and simultaneously analyzed by gas chromatography – mass spectrometry. The analytical method was optimized with respect to derivatization reaction and extraction conditions. The detection limits obtained for MBT, DBT and TBT ranged from 730 to 969 pg/g as Sn dry weight. Linear calibration curves were obtained for all analytes in the range of 30–1000 ng/L as Sn. Analysis of a standard reference sediment (CRM 462) demonstrates the suitability of this method for the determination of butyltin compounds in marine sediments. The application to the determination of TBT, DBT and MBT in a coastal marine sediment is shown.  相似文献   

6.
The determination of organotin compounds in water using gas chromatography-tandem mass spectrometry (GC-MS-MS) is described. Several organotin derivatives were synthesized by the reaction of organotin chlorides with Grignard reagents such as methyl-, propyl- and pentylmagnesium halides. After the optimization of the GC-MS-MS conditions, several derivatizations with the Grignard reagents were compared by evaluating the molar responses and volatilities of the derivatives and derivatization yields. As a result, the derivatizing reagent of choice is pentylmagnesium bromide. Calibration curves for the mono-, di- and tributyltins and mono-, di- and triphenyltins with pentylmagnesium bromide were linear in the range of 0.5-100 pg of Sn. The instrumental detection limits of six organotins ranged from 0.20 to 0.35 pg of Sn. The recovery tests from water samples (500 ml) were performed by using sodium diethyldithiocarbamate (DDTC) as a complexing reagent. Except for monophenyltin, the absolute recoveries of organotins from pure water at 200 ng of Sn/l were satisfactory. The recoveries calibrated by surrogate compounds (perdeuterated organotin chlorides) ranged from 71 to 109%. The method detection limits ranged from 0.26 to 0.84 pg of Sn (500-ml sample). This method was applied to the recovery of organotins from river water and seawater. The calibrated recoveries were between 90 and 122%.  相似文献   

7.
Extraction conditions for the determination of tributyltin (TBT) in sediment samples have been developed further. The analytical procedure is based on spiking with isotopically labelled analyte, pressurised liquid extraction (PLE) with a hexane/tropolone mixture, Grignard derivatization and quantification by GC–MS. It was applied to two unknown sediment samples as part of an intercomparison exercise of the Comité Consultatif pour la Quantité de Matière (CCQM). The detection limit was approximately 1.5 ng/g TBT as Sn, while the repeatability and intermediate precision (as the coefficient of variation) were 1.9% and 3.2%, respectively. The expanded uncertainty was 6.2% (coverage factor k = 2), and the accuracy was confirmed by measurement of a certified reference material.  相似文献   

8.
Guangshu Zhai 《Talanta》2009,77(4):1273-1033
A novel on-line coupled HPLC-hydride generation (HG)-ICP/MS system was developed for rapid, direct and sensitive speciation of methyltins in seawater without any pretreatment step. Methyltin compounds were separated by reversed phase HPLC, and then on-line reacted with potassium borohydride and acetic acid to generate volatile hydride products. The volatile derivatization products were separated in the spray chamber of ICP/MS and then introduced into ICP/MS by argon gas for detection. Monomethyltin (MMT), dimethyltin (DMT) and trimethyltin (TMT) were baseline separated in less than 15 min by reversed phase HPLC. The influence of KBH4 concentration and type of acid on the system performance was investigated and optimized. Calibration curves, based on peak heights against concentration, were linear in the range of 0.5-50 ng (Sn) mL−1 of methyltins with correlation coefficients of 0.9990, 0.9990 and 0.9996 for MMT, DMT and TMT, respectively. The relative standard deviations measured at 10 ng (Sn) mL−1 for these three methyltins were in the range of 0.6-1.4% (n = 5), and the calculated detection limits (S/N = 3) for MMT, DMT and TMT were 0.266, 0.095 and 0.039 ng (Sn) mL−1, respectively. This method was successfully applied to the speciation of methyltins in seawater with spiked recovery in the range of 95.4-106.9%. MMT and DMT were detected in all the seawater samples with concentrations in the range of 1.0-1.5 and 0.30-0.57 ng (Sn) mL−1 for MMT and DMT, respectively.  相似文献   

9.
An analytical procedure for the determination of tributyltin (TBT) in seawater, sediments and biota is described. Extraction of TBT as chloride is achieved by hydrochloric acid treatment followed by a liquid extraction using a modified solvent with a metal coordinating ligand, and a Grignard derivatization (CH3MgCl). The organotin fraction was isolated from the derivatized extract by column chromatography. The final determination was accomplished by on-column capillary gas chromatography (CGC) coupled to a flame photometric detector (FPD) and mass spectrometry (MS) confirmation. The relative detection limits of the analytical procedure were dependent of the environmental compartment, 0.5 ng 1–1 (as TBT) for seawater, and 0.1 ng g–1 and 0.4 ng g–1 for sediments and biota, respectively. The TBT recovery of fortified samples was in the range of 90% for water and biota, and of 60% in case of sediments. The reproducibility (RSD) of the whole procedure for three independent replicates was around 15%.  相似文献   

10.
Xiao Q  Hu B  He M 《Journal of chromatography. A》2008,1211(1-2):135-141
A method based on headspace single drop microextraction (HS-SDME) in combination with gas chromatography-inductively coupled plasma mass spectrometry (GC-ICP-MS) was proposed for the speciation analysis of butyltin compounds in environmental and biological samples. The sodium tetraethylborate (NaBEt4) and sodium tetrahydroborate (NaBH4) were used as the derivatizing reagent for in situ derivatization of the butyltins. For the two derivatizations, the HS-SDME parameters such as organic solvent, drop volume, sample pH, stirring rate, temperature, extraction time and the ionic strength were examined systematically. The analytical performance including the linearity ranges, limits of detection (LODs) and reproducibilities of the two derivatizations were compared under the respective optimized conditions. Derivatization with NaBEt(4) proved to be more sensitive and robust than that with NaBH4, leading to the LODs of 1.4 ng/L for MBT, 1.8 ng/L for DBT and 0.8 ng/L for TBT. The reproducibilities, expressed as relative standard deviations (RSDs), were in the range of 1.1-5.3% (c=1 microg/L, n=3). With tripropyltin (TPrT) as internal standard, HS-SDME-GC-ICP-MS with NaBEt(4) derivatization was applied for the speciation analysis of butyltins in real seawater and shellfish samples. The butyltins found in the real-world samples are 31ng/L MBT, 79 ng/L DBT and 32 ng/L TBT for seawater, and 11.6-30.4 ng/g MBT, 11.8-8.9 ng/g DBT and 12.8-52.6 ng/g TBT for different shellfish samples. For validation, the developed method was also employed for the speciation analysis of butyltins in certified reference material (CRM) of PACS-2 sediment, and the determined values are in a good agreement with the certified values. The developed method is simple, rapid, sensitive, and cost-effective and provides an attractive alternative for butyltins speciation in biological and environmental samples with complex matrix.  相似文献   

11.
This study describes a direct comparison of GC and HPLC hyphenated to ICP–MS determination of tributyltin (TBT) in sediment by species-specific isotope dilution analysis (SS-IDMS). The certified reference sediment PACS-2 (NRC, Canada) and a candidate reference sediment (P-18/HIPA-1) were extracted using an accelerated solvent extraction (ASE) procedure. For comparison of GC and LC methods an older bottle of PACS-2 was used, whilst a fresh bottle was taken for demonstration of the accuracy of the methods. The data obtained show good agreement between both methods for both the PACS-2 sediment (LC–ICP–IDMS 828±87 ng g–1 TBT as Sn, GC–ICP–IDMS 848±39 ng g–1 TBT as Sn) and the P-18/ HIPA-1 sediment (LC–ICP–IDMS 78.0±9.7 ng g–1 TBT as Sn, GC–ICP–IDMS 79.2±3.8 ng g–1 TBT as Sn). The analysis by GC–ICP–IDMS offers a greater signal-to-noise ratio and hence a superior detection limit of 0.03 pg TBT as Sn, in the sediment extracts compared to HPLC–ICP–IDMS (3 pg TBT as Sn). A comparison of the uncertainties associated with both methods indicates superior precision of the GC approach. This is related to the better reproducibility of the peak integration, which affects the isotope ratio measurements used for IDMS. The accuracy of the ASE method combined with HPLC–ICP–IDMS was demonstrated during the international interlaboratory comparison P-18 organised by the Comité Consultatif pour la Quantité de Matière (CCQM). The results obtained by GC–ICP–IDMS for a newly opened bottle of PACS-2 were 1087±77 ng g–1 Sn for DBT and 876±51 ng g–1 Sn for TBT (expanded uncertainties with a coverage factor of 2), which are in good agreement with the certified values of 1090±150 ng g–1 Sn and 980±130 ng g–1 Sn, respectively.  相似文献   

12.
This article presents an analytical approach that used chemical derivatization to enhance mass spectrometric (MS) response in electrospray ionization (ESI) mode of 1-hydroxypyrene (1-OHP), a commonly used biomarker to monitor human exposure to polycyclic aromatic hydrocarbons (PAHs). The enhancement successfully enabled the desired detection of 50 pg/mL in human urine. The introduction of an MS-friendly dansyl group to 1-OHP enhanced both ionization efficiency in the ESI source and collision-activated dissociation (CAD) in the collision cell. The response increase was estimated to be at least 200-fold, and enabled the reduction of sample size to only 100 microL. The selective MS detection also facilitated a fast (run time 3 min) liquid chromatography (LC) method which successfully resolved the analyte and interferences. The sample processing procedure included enzymatic hydrolysis of glucuronide and sulfate conjugates, liquid-liquid extraction, derivatization with dansyl chloride and a final liquid-liquid extraction to generate clean extracts for LC/MS/MS analysis. This approach has been validated as sensitive, linear (50-1000 pg/mL), accurate and precise for the quantitation of 1-OHP in human urine. This is the first report of using chemical derivatization to enhance MS/MS detection with fast chromatography in the determination of 1-OHP in human urine.  相似文献   

13.
Summary Methods are described for the analysis of environmental samples like water, sediment and suspended matter for the determination of all organotin compounds (OTs) that are currently used as biocides: tributyltin (TBT), triphenyltin (TPT), tricyclohexyltin (TCT) and fenbutatin oxide (FBTO). In water also five degradation products (di and mono substituted analogs) can be determined. Alkylation using a Grignard reagent was used to obtain OT derivatives amenable to gas chromatography (GC). Both methylation and pentylation have been employed for derivatization prior to GC analysis. The present results show that derivatization efficiencies for TPT, TCT and FBTO at trace levels are higher using methylation than pentylation. Detection limits for each type of sample matrix were determined using GC/Mass Selective Detection (GC/MSD) and GC/Atomic Emission Detection (AED). In sediment and suspended matter only tri-substituted OTs (i.e. the parent compounds) could be determined. Detection limits ranged from 0.2 to 10 ng/g dry weight. FBTO, not previously detected in environmental samples, was found at levels of 4 and 11 ng/g in a suspended matter sample and a sediment sample, respectively. In water the OTs and their degradation products were determined at levels of 1–10 ng/l (as tin) using 200 ml water samples.  相似文献   

14.
Isotope-dilution analysis in combination with GC-ICP-MS detection has been applied to the determination of butyltin species in environmental samples. Different spikes containing the isotopically labeled butyltin species have been synthesized in the laboratory after optimization of the reaction conditions. The isotopic compositions of the tin species in the different spike solutions were determined by GC-ICP-MS after derivatization by aqueous ethylation with sodium tetraethylborate. Reverse isotope-dilution analysis was used for quantitation of the spike solutions by means of natural MBT, DBT, and TBT standards. The mixed spikes were used for simultaneous analysis of MBT, DBT and TBT in the certified reference materials, PACS-2, CRM 462, and CRM 646, with satisfactory results. The excellent agreement of the different speciation results obtained by use of the different spikes is a good indicator of the precision, accuracy, and reliability which can be achieved by using isotope-dilution analysis for trace metal speciation.Application of a double spike containing (119)Sn-enriched MBT (79.7 At%), (118)Sn-enriched DBT (86.7 At%), and (119)Sn-enriched TBT (83.1 At%) also enabled evaluation of the conditions resulting in quantitative extraction of the species from the solid matrix, in combination with possible alterations depending on the different extraction procedures used (mechanical shaking, ultrasounds, and microwaves). Mathematical equations used for this purpose computed the correct species concentrations directly and, additionally, the decomposition factors (from TBT to DBT and from DBT to MBT) after precise measurement of the (119)Sn/(120)Sn and (118)Sn/(120)Sn ratios for all butyltin species by GC-ICP-MS.  相似文献   

15.
A flame photometric detector using quartz surface-induced tin emission was designed and evaluated for quantification analysis of butyltin species. It has been demonstrated that this quartz surface-induced tin emission, centred at 390 nm, is more sensitive than the commonly used gas-phase emission at 610 nm. The dependence of detector response on quartz enclosure was studied. The operational variables such as hydrogen–air flow rate, carrier-gas flow rate and purge-gas flow rate were optimized. An analytical procedure for speciation analysis of butyltin species in water using simultaneous hydride generation with sodium borohydride and extraction into dichloromethane was established. The detection limits (defined as the signals that equal three times the deviations of the noise) were 0.3 pg of Sn for tetrabutyltin (TeBT), 5 pg of Sn for monobutyltin (MBT), 18 pg of Sn for dibutyltin (DBT) and 2 pg of Sn for tributyltin (TBT), which are approximately 10- to 30-fold better than those reported for using more commonly used gas-phase emission centred at 610 nm.  相似文献   

16.
Dispersive liquid-liquid microextraction and gas chromatography-flame photometric detection (DLLME-GC-FPD) were performed for the speciation of butyl and phenyltin compounds in water samples after derivatization with sodium tetraethylborate (NaBEt4). Some important parameters, such as pH, amount of NaBEt4, derivatization time, kind and volume of extraction and disperser solvents, extraction time and salt effect were investigated and optimized. High enrichment factors (825-1036) and low detection limits (0.2-1 ng L(-1)) were obtained under the optimum conditions. The calibration graphs were linear in the range of 0.5-1000 ng L(-1) (as Sn) for the target analytes. The relative standard deviations (RSDs) for the extraction of 20 ng L(-1) (as Sn) of butyl and phenyltin compounds varied from 2.3 to 5.9% (n=7) and from 4.1 to 8.8% (n=7) with and without using internal standard, respectively. Seawater and river water samples were successfully analyzed using the proposed method and the relative recoveries of the studied compounds in the water samples, at spiking levels of 10.0 and 100 ng L(-1) (as Sn) were obtained to be 82.5-104.7%.  相似文献   

17.
A liquid chromatographic method is described for the simultaneous determination of tributyltin (TBT) and the hydroxylated intermediate 4-hydroxybutyldibutyltin (OHBuDBT). Separation was achieved in reverse phase mode on a cyanopropyl-bonded silica column under a gradient elution. Various organic solvents and additives were tested and the optimum composition of the mobile phase contained methanol, water, formic acid and tropolone as a complexing agent. Butyltin compounds were detected with an ion trap mass spectrometer interfaced to a liquid chromatograph with an atmospheric pressure chemical ionization source (LC-APCI-MS). Identification and fragmentation pattern of OHBuDBT chloride in full scan MS and MS/MS are reported for the first time using LC-APCI-MS. Gas chromatography-mass spectrometry (GC-MS) spectrum of the same compound is also reported for the first time for comparison purpose. This method allowed limits of detection (LOD) of 35 and 26 ng mL−1 for TBT and OHBuDBT, respectively, based on successive injections of 10 μL of blank seawater extract. A liquid-liquid extraction procedure using n-hexane-ethyl acetate was developed for the simultaneous analysis of TBT and OHBuDBT chlorides in natural seawater and allowed average recoveries from 72 to 96% for the two compounds at three different spiking levels.  相似文献   

18.
An accurate, ultra-sensitive and robust method for speciation of mono, di, and tributyltin (MBT, DBT, and TBT) by speciated isotope-dilution gas chromatography-inductively coupled plasma-mass spectrometry (SID-GC-ICPMS) has been developed for quantification of butyltin concentrations in cryogenic biological materials maintained in an uninterrupted cryo-chain from storage conditions through homogenization and bottling. The method significantly reduces the detection limits, to the low pg g(-1) level (as Sn), and was validated by using the European reference material (ERM) CE477, mussel tissue, produced by the Institute for Reference Materials and Measurements. It was applied to three different cryogenic biological materials-a fresh-frozen mussel tissue (SRM 1974b) together with complex materials, a protein-rich material (whale liver control material, QC03LH03), and a lipid-rich material (whale blubber, SRM 1945) containing up to 72% lipids. The commutability between frozen and freeze-dried materials with regard to spike equilibration/interaction, extraction efficiency, and the absence of detectable transformations was carefully investigated by applying complementary methods and by varying extraction conditions and spiking strategies. The inter-method results enabled assignment of reference concentrations of butyltins in cryogenic SRMs and control materials for the first time. The reference concentrations of MBT, DBT, and TBT in SRM 1974b were 0.92 +/- 0.06, 2.7 +/- 0.4, and 6.58 +/- 0.19 ng g(-1) as Sn (wet-mass), respectively; in SRM 1945 they were 0.38 +/- 0.06, 1.19 +/- 0.26, and 3.55 +/- 0.44 ng g(-1), respectively, as Sn (wet-mass). In QC03LH03, DBT and TBT concentrations were 30.0 +/- 2.7 and 2.26 +/- 0.38 ng g(-1) as Sn (wet-mass). The concentration range of butyltins in these materials is one to three orders of magnitude lower than in ERM CE477. This study demonstrated that cryogenically processed and stored biological materials are a promising alternative to conventional freeze-dried materials for organotin speciation analysis, because these are, at present, the best conditions for minimizing degradation of thermolabile species and for long-term archival. Finally, the potential of the analytical method was illustrated by analysis of polar bear (Ursus maritimus) and beluga whale (Delphinapterus leuca) liver samples that had been collected in the Arctic and archived at the Marine Environmental Specimen Bank. Significant concentrations of butyltin compounds were found in the samples and provide the first evidence of the presence of this class of contaminant in the Arctic marine ecosystem. Figure Eye catch image.  相似文献   

19.
Bisphosphonates are extremely hydrophilic and structurally similar to many endogenous phosphorylated compounds, making their selective extraction from serum or urine very challenging. Many bisphosphonates lack strong chromophores for sensitive UV or fluorescence detection. We report here the first general approach to enable sensitive and selective quantitation of N-containing bisphosphonates by liquid chromatography/tandem mass spectrometry (LC/MS/MS) following derivatization with diazomethane. The novelty of the strategy lies in performing the derivatization on silica-based anion-exchange sorbents as an integrated step in the sample purification by solid-phase extraction (SPE). The 'on-cartridge' reaction with diazomethane not only led to higher efficiency of derivatization, but also enabled a more discriminatory recovery of the drug's derivatives. The derivatized bisphosphonates demonstrated improved chromatographic separation and increased sensitivity of the detection. The general applicability of the approach was demonstrated by validation of bioanalytical methods for risedronate and alendronate in human serum and urine. Sensitivity was achieved at the pg/mL level with merely 100-200 microL of sample.  相似文献   

20.
A method for speciation of organotin compounds in marine sediments by solvent extraction combined with hydride generation gas chromatography-atomic absorption spectrometry has been developed. Sediment samples spiked with tributyltin and triphenyltin chlorides were homogenized in hydrochloric acid. The chlorides were extracted twice into toluene. Recoveries of the organotin compounds from the spiked sediment samples were improved by the addition of 8-quinolinol. Tributyltin and triphenyltin chlorides form ion-associates with 8-quinolinol in aqueous hydrochloric acid. The method was optimized with respect to derivatization reactions and extraction conditions. Interferences from Sn(II/IV) and additional 13 ions were investigated. Recoveries of 84-100% for tributyltin and 86-100% for triphenyltin were achieved using this method. The detection limits obtained for tributyltin and triphenyltin chlorides were 95 and 145 pg, respectively, corresponding to a relative detection limit of 95 and 145 ng kg(-1) in the sediment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号