首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Polyaniline/BaFe12O19 (PANI/Ba ferrite) composites were synthesized by in situ polymerization at different aniline/Ba ferrite weight ratios (Ani/Ba ferrite=1/2, 1/1 and 2/1) and introduced into epoxy resin to be microwave absorber. The spectroscopic characterizations of the formation processes of PANI/Ba ferrite composites were studied using Fourier transform infrared, ultraviolet-visible spectrophotometer, X-ray diffraction, scanning electron microscopy, transmission electron microscopy and electron spin resonance. Microwave-absorbing properties were investigated by measuring complex permittivity, complex permeability and reflection loss in the 2-18 and 18-40 GHz microwave frequency range using the free space method. The results showed that a wider absorption frequency range could be obtained by adding different polyaniline contents in Ba ferrite.  相似文献   

2.
Nanoparticles of nickel ferrite have been synthesized by the sol–gel method and the effect of grain size on its structural and magnetic properties have been studied in detail. X-ray diffraction (XRD) studies revealed that all the samples are single phasic possessing the inverse spinel structure. Grain size of the sol–gel synthesized powders has been determined from the XRD data and the strain graph. A grain size of 9 nm was observed for the as prepared powders of NiFe2O4 obtained through the sol–gel method. It was also observed that strain was induced during the firing process. Magnetization measurements have been carried out on all the samples prepared in the present series. It was found that the specific magnetization of the nanosized NiFe2O4 powders was lower than that of the corresponding coarse-grained counterparts and decreased with a decrease in grain size. The coercivity of the sol–gel synthesized NiFe2O4 nanoparticles attained a maximum value when the grain size was 15 nm and then decreased as the grain size was increased further.  相似文献   

3.
Present work is a study of temperature dependent electron paramagnetic resonance spectra of Ce and Gd doped nickel ferrite nanoparticles. The samples, synthesised by chemical route were characterised by X-ray diffractometer, electron paramagnetic resonance spectroscopy (EPR) and vibrating sample magnetometer (VSM). The average crystallite size of pure nickel ferrite is ∼64 nm and for Gd and Ce doped samples it is ∼20 nm and ∼14 nm, respectively. The EPR spectra were recorded from 120 to 300 K. Doping with Gd and Ce reduces the line width and g-value in comparison to that of pure nickel ferrite. Ce doped samples have the lowest values of both these parameters at room temperature. This indicates that Ce doped samples show lowest loss and is suitable for high frequency devices. EPR spin numbers are reduced while the spin relaxation time is increased after doping with rare earth ions. Gd doped samples have higher values of relaxation time and lower spin numbers in comparison to that of Ce doped samples. VSM results show that the magnetisation and coercivity are reduced after doping with both Ce and Gd rare earth ions.  相似文献   

4.
Ag-added (Ca0.975La0.025)3Co4O9 ceramics were fabricated using spark plasma sintering from the precursor powder synthesized by a polyacrylamide gel method. The results indicated that Ag precipitated as a second phase in Ca3Co4O9 matrix. The addition of Ag was effective in enhancing the electrical conductivity and had a slight effect on Seebeck coefficient. In addition, the temperature dependence of electrical conductivity showed that the hole hopping conduction mechanism was dominant for the Ag-added (Ca0.975La0.025)3Co4O9 ceramics. The activation energy remained unchanged with the increasing Ag content. The thermoelectric power factor of Ag-added (Ca0.975La0.025)3Co4O9 ceramics reached about 5×10−4 Wm−1 K−2 at 700 °C, suggesting a promising thermoelectric oxide candidate at high temperatures.  相似文献   

5.
张毅  邓朝勇  马静  林元华  南策文 《中国物理 B》2008,17(10):3910-3916
Multiferroic NiFe2O4 (NFO)-BaTiO3 (BTO) bilayered thin films are epitaxially grown on (001) Nb-doped SrTiO3 (STO) substrates by pulsed-laser deposition (PLD). Different growth sequences of NFO and BTO on the substrate yield two kinds of epitaxial heterostructures with (001)-orientation, i.e. (001)-NFO/(001)-BTO/substrate and (001)- BTO/(001)-NFO/substrate. Microstructure studies from x-ray diffraction (XRD) and electron microscopies show differences between these two heterostructures, which result in different multiferroic behaviours. The heterostructured composite films exhibit good coexistence of both ferroelectric and ferromagnetic properties, in particular, obvious magnetoelectric (ME) effect on coupling response.  相似文献   

6.
Single phase BaM (BaFe12O19) ferrites are prepared by using sol–gel method. The preparing conditions of samples are investigated in detail, such as acid/nitrate ratio, the value of pH and annealing temperature. The best conditions on preparing BaFe12O19, which can be obtained on a Fe/Ba ratio of 12, the citric acid contents R = 3, the starting pH of solution is 9, and annealing temperature 950 °C. The thermal decomposition behavior of the dried gel was examined by TG–DSC, the structure and properties of powders were measured respectively by XRD techniques. The magnetic properties of barium ferrites are emphatically researched about the changing crystallite size and annealing temperature by the vibrating sample magnetometer (VSM). Magnetic measurement shows that the barium ferrite samples annealed at 1000 °C has the maximal coercive field of 5691.91 Oe corresponding to the maximal remnant magnetization of 35.60 emu/g and the sample synthesized at 1000 °C has the maximal saturation magnetization of 60.75 emu/g.  相似文献   

7.
The structural, microstructural and magnetic properties of nanoferrite NiFe2O4 (NF), CoFe2O4 (CF) and MnFe2O4 (MF) thin films have been studied. The coating solution of these ferrite films was prepared by a chemical synthesis route called sol-gel combined metallo-organic decomposition method. The solution was coated on Si substrate by spin coating and annealed at 700 °C for 3 h. X-ray diffraction pattern has been used to analyze the phase structure and lattice parameters. The scanning electron microscopy (SEM) and atomic force microscopy (AFM) have been used to show the nanostructural behavior of these ferrites. The values of average grain's size from SEM are 44, 60 and 74 nm, and from AFM are 46, 61 and 75 nm, respectively, measured for NF, CF and MF ferrites. At room temperature, the values of saturation magnetization, Ms∼50.60, 33.52 and 5.40 emu/cc, and remanent magnetization, Mr∼14.33, 15.50 and 1.10 emu/cc, respectively, are observed for NF, CF and MF. At low temperature measurements of 10 K, the anisotropy of ferromagnetism is observed in these ferrite films. The superparamagnetic/paramagnetic behavior is also confirmed by χ′(T) curves of AC susceptibility by applying DC magnetizing field of 3 Oe. The temperature dependent magnetization measurements show the magnetic phase transition temperature.  相似文献   

8.
BaFe12−x (Mn0.5Cu0.5Zr)x/2O19 hexaferrites with x=1, 2 and 3 were prepared by sol–gel process. The ferrite powders possess hexagonal shape and are well separated from one another. The powders of these ferrites were mixed with polyvinylchloride (PVC) plasticizer to be converted into a microwave absorbing composite ferrite with a thickness of 1.8 mm. X-ray diffractometer (XRD), scanning electron microscope (SEM), ac susceptometer, vibrating sample magnetometer and vector network analyzer were used to analyze its structure, electromagnetic and microwave absorption properties. The results showed that magnetoplumbite structures for all samples were formed. The sample with higher magnetic susceptibility and coercivity exhibits a larger microwave absorbing ability. Also the present investigation demonstrates that a microwave absorber using BaFe12−x(Mn0.5Cu0.5Zr)x/2O19 (x=2 and 3)/PVC with a matching thickness of 1.8 mm can be fabricated for applications over 15 GHz, with reflection loss more than −25 dB for specific frequencies, by controlling the molar ratio of the substituted ions.  相似文献   

9.
The solid–solid interactions between cobalt and ferric oxides to produce CoFe2O4 were followed up using XRD investigation. The effect of Li2O-doping on the ferrite formation was also studied. The electrical and dielectric parameters of pure and doped mixed solids precalcined at 1273 K were measured using d.c and a.c instruments.The dopant concentration was varied between 0.5 and 6 mol% Li2O. The results obtained revealed that Li2O doping much enhanced the ferrite formation due to an increase in the mobility of the reacting species.

The addition of the smallest amount of Li2O (0.5 mol%) resulted in measurable variations in the electrical constants (ρ, Ea, ′, ″ and tan δ). Resistivity increased upon increasing the dopant concentration up to 1.5 mol% exceeding the values measured for the undoped sample. Furthermore, the presence of 6 mol% Li2O brought about a significant decrease of electrical resistivity. Also, the activation energy decreased with increasing the dopant concentration. The dielectric constant behaves according to ε=const. 1/ρ1/2.

The Li2O-doping modified the values of different dielectric constants, the change in these constants was found to be strongly dependent on the amount of Li2O added.These results have been discussed in terms of the potentiality of Li2O in increasing the mobility of the reacting species involved in the ferrite formation.  相似文献   


10.
Nanocrystalline zinc ferrite (ZnFe2O4) is synthesized by high-energy ball-milling after 12 h from a powders mixture of zinc oxide (ZnO) and hematite (α-Fe2O3) with balls to powders mass ratio of 20:1. X-ray diffraction, vibrating sample magnetometer (VSM), the Mössbauer spectrometry and photoluminescence (PL) are used to characterize the samples. Rietveld analysis and VSM measurements show that the powder has an average crystallites size of 10 nm and a ferrimagnetic behavior with a saturation magnetization of 30 emu/g. After annealing at 700 °C, the lattice parameter reduces from 8.448 to 8.427 Å and the sample transforms into a superparamagnetic behavior, which was confirmed as well by the room temperature Mössbauer spectrometry. Different mechanisms to explain the obtained results and the correlation between magnetism and structure are discussed. Finally, the broadband visible emission band is observed in the entire PL spectrum and the estimated energy band gap is about 2.13 eV.  相似文献   

11.
The solid solution behavior of the Ni(Fe1−nCrn)2O4 spinel binary is investigated in the temperature range 400-1200 °C. Non-ideal solution behavior, as exhibited by non-linear changes in lattice parameter with changes in n, is observed in a series of single-phase solids air-cooled from 1200 °C. Air-annealing for 1 year at 600 °C resulted in partial phase separation in a spinel binary having n=0.5. Spinel crystals grown from NiO, Fe2O3 and Cr2O3 reactants, mixed to give NiCrFeO4, by Ostwald ripening in a molten salt solvent, exhibited single-phase stability down to about 750 °C (the estimated consolute solution temperature, Tcs). A solvus exists below Tcs. The solvus becomes increasingly asymmetric at lower temperatures and extrapolates to n values of 0.2 and 0.7 at 300 °C. The extrapolated solvus is shown to be consistent with that predicted using a primitive regular solution model in which free energies of mixing are determined entirely from changes in configurational entropy at room temperature.  相似文献   

12.
Soft magnetic thin films of Ni, NiFe and NiFe2O4 were prepared using reactive magnetron sputtering in various deposition conditions. Experimentally observed soft magnetic property was compared and correlated with nanocrystalline structure evolution. Ni and NiFe deposited films are textured with fcc(111) phase preferred orientation. Accordingly, grain size and lattice parameter were calculated from X-ray diffraction (111) peak line width and 2θ peak position. Addition of reactive gas oxygen in deposition process has substantial effect on crystalline structure of film. There is phase transition from the ordered NiFe (111) structure to the NiFe2O4 nanocrystalline phase. The resulting film has shown small X-ray diffraction intensity peak corresponding to (311) and (400) orientation, indicating small amount of existing NiFe2O4 phase. The mechanism has been discussed to be responsible for nanocrystallization and amorphization of NiFe2O4 films. Magnetic measurement (M-H) loop reveal soft magnetic nature of films with magnetic anisotropy. The coercivity (Hc) of films is in accordance with random anisotropy model, where Hc reduced with grain size. The structural transformation was supported by Fourier transforms infrared spectroscopy measurement. The films are highly smooth with surface roughness in the range of ∼0.53-0.93 nm. NiFe2O4 films have shown lowest surface roughness with highest electrical resistivity values. The structural, surface, magnetic and infrared spectroscopy results are observed and analyzed.  相似文献   

13.
We report the optical and electronic properties of the inverse spinel ferrite NiFe2O4 and CoFe2O4 thin films deposited on single crystal sapphire by electron beam deposition. We carried out variable temperature (78–500 K) transmittance measurements on the thin films to investigate the optical properties and electronic structures of these ferrites. The absorption spectra of both NiFe2O4 and CoFe2O4 thin films show insulating characters with Ni (Co) d to d on-site transitions below 3 eV. The energy bands above 3 eV are mainly due to the O 2p to Fe 3d charge transfer transitions. The observed electronic transitions have been assigned based on the first principles calculations and comparisons with structurally similar Ni and Co-containing compounds. The Co2+ d to d transition in the CoFe2O4 thin film shows a strong temperature dependence, likely due to the spin-charge coupling effect.  相似文献   

14.
Nanocrystalline CoFe2O4 with an average grain size of about 40 nm was successfully prepared by a modified citrate-gel method. At temperatures of 3 and 300 K, the measured coercive fields are 0.43 and 0.07 T and the magnetizations at 7 T are 89 and 83 emu/g, respectively. At room temperature, the longitudinal and transversal magnetostriction values are −130 and 70 ppm, respectively. The contribution of a disordered magnetic phase was detected by the occurrence of a peak in the ac-susceptibilities curves at around 250 K. The temperature dependence of the field-cooled and zero field-cooled low-field magnetization showed a larger irreversibility below this temperature. This disordered phase behaves like a spin-glass, which is coexisting with the ferrimagnetically ordered main phase  相似文献   

15.
Exchange bias (EB) and magnetic properties of ferrimagnetic (FI) NiFe2O4 and antiferromagnetic (AFM) NiO bulk composites, prepared by a chemical co-precipitation and post-thermal decomposition method from Fe-doped NiO matrix, have been investigated. Enhanced coercivities and shifted hysteresis loops are still observed for these samples after field cooling. But the vertical magnetization shifts are not observed. In comparison with the bulk samples, a NiO/10% NiFe2O4 nanocomposite was also prepared via direct mixture, in which both the horizontal and vertical shift in the hysteresis loops are observed at 10 K. The observed phenomena are explained in terms of interfacial exchange interaction between the two phases and the finite-size effect, respectively.  相似文献   

16.
NiFe2O4纳米线阵列的制备与磁性   总被引:4,自引:0,他引:4       下载免费PDF全文
于冬亮  都有为 《物理学报》2005,54(2):930-934
在氧化铝模板的纳米孔洞中, 用电化学的方法沉积铁镍合金纳米线,经过550℃30h氧化处理 , 成功制备出 NiFe2O4纳米线阵列. 分别用扫描电子显微镜 (SEM) 、透射电 子显微镜 (TEM) 、x射线衍射仪 (XRD) 和振动样品磁场计 (VSM) 对样品的形貌、晶体结构 和磁学性质进行了表征测试. SEM和TEM观察结果显示氧化铝模板的孔洞分布均匀,孔心距约 为110nm; 纳米线的直径约为70nm. XRD显示纳米线阵列的物相结构为NiFe2O4; VSM测试结果表明,NiFe2O4纳米线阵列膜的易磁化方向垂直于膜面. 当垂直 磁化时磁滞回线的矩形比约为05,矫顽力为41×103A/m,比氧化处理前的铁镍合金 纳米线阵列都有显著提高. 关键词: 纳米线 Ni Fe2O4 矫顽力  相似文献   

17.
In this research, the magnetic and optical properties of SrFe2O4 ceramic were studied. The calculations were performed by Full Potential Linearized Augmented Plane Wave method in Density Functional Theory framework with generalized gradient (GGA), GGA+U and modified Becke–Johnson approximations for the exchange and correlation functionals. The results show that SrFe2O4 is a ferrimagnetic ceramics with six different spin configurations. The Hubbard parameter was calculated (Ueff=4.5 eVUeff=4.5 eV) by an ab initio method. The optical properties such as dielectric function, refraction index, electron energy-loss function, reflectivity, absorption coefficient and optical conductivity were investigated at zero up to 20 GPa pressure in x, y and z directions. The pressure coefficients of optical band, static dielectric constant, plasmon peak, static refraction index and the maximum of absorption were determined. Moreover, the pressure dependence of the static dielectric constant, plasmon peak, static refraction index, the maximum of absorption and the optical gap were investigated.  相似文献   

18.
The present investigation is related to the deposition of single-phase nano-sheets spinel nickel ferrite (NiFe2O4) thin films onto glass substrates using a chemical method. Nano-sheets nickel ferrite films were deposited from an alkaline bath containing Ni2+ and Fe2+ ions. The films were characterized for their structural, surface morphological and electrical properties by means of X-ray diffraction (XRD), transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and two-point probe electrical resistivity techniques. The X-ray diffraction pattern showed that NiFe2O4 nano-sheets are oriented along (3 1 1) plane. The FT-IR spectra of NiFe2O4 films showed strong absorption peaks around 600 and 400 cm−1 which are typical for cubic spinel crystal structure. Microstructural study of NiFe2O4 film revealed nano-sheet like morphology with average sheet thickness of 30 nm. The room temperature electrical resistivity of the NiFe2O4 nano-sheets was 107 Ω cm.  相似文献   

19.
Nano-sized NiFe2−xLaxO4 ferrites (x=0.00, 0.01, 0.02, 0.03, 0.04, 0.5, 0.07 and 0.09) were synthesized for the first time by using metal nitrate and egg-white extract in aqueous medium. The ferrites were characterized by DTA-TG, XRD, TEM, FT-IR and VSM techniques. The thermal decomposition behavior revealed that the precursors were completely decomposed at about 420 °C. TEM image shows agglomerated nanoparticles with crystallite sizes agrees well with that estimated by XRD measurement. XRD patterns show a secondary phase of LaFeO3 besides the cubic structure of the La-substituted ferrites. The lattice parameters, X-ray density and crystallite size were found to increase with the increasing La content. The VSM measurement exhibited a ferromagnetic property for all the samples at room temperature. With increasing La, Ms was found to decrease while Hc increased. The decrease in the saturation magnetization is attributed to the paramagnetic properties of lanthanum, which prefer to substitute iron present in the octahedral sites. The increase in the coercivity is due to either the stronger magnetocrystalline anisotropy induced by La substitution or the change in the crystallite size.  相似文献   

20.
A series of rare-earth (RE)-doped nanocrystalline CoFeMn0.9RE0.1O4 thin films were prepared on monocrystalline silicon substrate by a sol–gel process, and the influences of the various RE3+ ions on the microstructure, magnetism and polar magneto-optical Kerr effects of the as-deposited films were examined. The results revealed that both of the magnetism and Kerr effect of CoFeMn0.9RE0.1O4 films could be mediated by doping with various RE3+ ions. The trend of both MS and HC of CoFeMn0.9RE0.1O4 films is similar to that of Bohr magneton across the series of rare-earth ions. The position of Kerr rotation peaks was red-shifted and their intensities increased, especially when doping with La3+, Tb3+, Y3+ or Yb3+ and so on. The enhanced MOKEs in CoFeMn0.9RE0.1O4 nanocrystalline thin films might promise their applications for magneto-optical recording in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号