共查询到20条相似文献,搜索用时 15 毫秒
1.
Highly efficient transparent Zn2SiO4:Mn2+ film phosphors on quartz substrates were deposited by the thermal diffusion of sputtered ZnO:Mn film. They show a textured structure with some preferred orientations. Our film phosphor shows, for the best photoluminescence (PL) brightness, a green PL brightness of about 20% of a commercial Zn2SiO4:Mn2+ powder phosphor screen. The film shows a high transmittance of more than 10% at the red-color region. The excellence in PL brightness and transmittance can be explained in terms of the textured crystal growth with a continuous gradient of Zn2SiO4: Mn2+ crystals. 相似文献
2.
R. Zallen 《Solid State Communications》2006,137(3):154-157
The optical absorption edge of brookite TiO2 was measured at room temperature, using natural crystals. The measurements extend up to 3.54 eV in photon energy and 2000 cm−1 in absorption coefficient. The observed absorption edge is broad and extends throughout the visible, quite different from the steep edges of rutile and anatase. No evidence of a direct gap is seen in the range measured. The spectral dependence of the absorption strongly suggests that the brookite form of TiO2 is an indirect-gap semiconductor with a bandgap of about 1.9 eV. 相似文献
3.
The electronic band structures of GaAs1−xNx for x=0.009, 0.016, 0.031 and 0.062 are calculated ab initio using a supercell approach in connection with the full-potential linear muffin-tin orbital method. Corrections for the ‘LDA gap errors’ are made by adding external potentials which are adjusted to yield correct gaps in pure GaAs. Even small amounts of nitrogen modify significantly the conduction bands, which become strongly non-parabolic. The effective mass in the lowest conduction band thus exhibits strong k-vector dependence. Calculated variations of gaps and effective masses with x and externally applied pressure are presented and compared to a variety of experimental data. There are significant error bars on our results due to the use of the supercell approach. These are estimated by examining the effects of varying the geometrical arrangement of the N-atoms substituting As. However, the calculations show that the electron mass for x>0.009 is much larger than that of pure GaAs, and that it decreases with x. 相似文献
4.
A. Abu EL-Fadl A.S. Soltan A.A. Abu-Sehly 《Journal of Physics and Chemistry of Solids》2007,68(7):1415-1421
The effect of γ-radiation dose on the optical spectra and optical energy gap (Eopt.) of Se76Te15Sb9 thin films was studied. The dependence of the absorption coefficient (α) on the photon energy (hν) was determined as a function of radiation dose. The films show indirect allowed interband transition that is influenced by the radiation dose. Both the optical energy gap and the absorption coefficient were found to be dose dependent. The indirect optical energy gap was found to decrease from 1.257 to 0.664 eV with increasing the radiation dose from 10 to 250 krad, respectively. The results can be discussed on the basis of γ-irradiation-induced defects in the film. The width of the tail of localized states in the band gap (Ee) was evaluated using the Urbach edge method. The refractive index (n) was determined from the analysis of the transmittance and reflectance data. Analysis of the refractive index yields the values of high frequency dielectric constant (ε∞) and the carrier concentration (N/m*). The dependence of refractive index on the radiation dose has also been discussed. Other optical parameters such as real and imaginary parts of the dielectric constant (ε1, ε2) and the extinction coefficient (k) have been evaluated. It was found that the spectral absorption coefficient is expected to a suitable control parameter of γ-irradiation-sensitive elements of dosimetric systems for high energy ionizing radiation (0.06-1.33 MeV). 相似文献
5.
The ellipsometric characterizations of amorphous beryllium nitride (a-Be3N2) thin films deposited on Si (1 0 0) and quartz at temperature <50 °C using reactive RF sputtering deposition were examined in the wavelength range 280-1600 nm. X-ray diffraction of the films showed no structure, suggesting the Be3N2 films grown on the substrates are amorphous. The composition and chemical structures of the amorphous thin films were determined by using electron spectroscopy for chemical analysis. The surface morphology of a-Be3N2 was characterized by atomic force microscopy. The thicknesses and optical constants of the films were derived from spectroscopic ellipsometry measurements. The variation of the optical constants with thickness of the deposited films has been investigated. From the angle dependence of the polarized reflectivity we deduced a Brewster angle of 64°. At any angle of incidence, the a-Be3N2 shown high transmissivity (80-99%) and low reflectivity (<18%) in the visible and near infrared regions. Hence, the a-Be3N2 could be a good candidate for antireflection optical coatings under conditions of optimized the type of polarization and the angle of incidence. 相似文献
6.
Jong Seong Bae Kyoo Sung Shim Soung-soo Yi Young Soo Kim 《Applied Surface Science》2006,252(13):4564-4568
The influence of lithium doping on the crystallization, the surface morphology, and the luminescent properties of pulsed laser deposited Y2−xGdxO3:Eu3+ thin film phosphors was investigated. The crystallinity, the surface morphology, and the photoluminescence (PL) of films depended highly on the Li-doping and the Gd content. The relationship between the crystalline and morphological structures and the luminescent properties was studied, and Li+ doping was found to effectively enhance not only the crystallinity but also the luminescent brightness of Y2−xGdxO3:Eu3+ thin films. In particular, the incorporation of Li and Gd into the Y2O3 lattice could induce remarkable increase in the PL. The highest emission intensity was observed Li-doped Y1.35Gd0.6O3:Eu3+ thin films whose brightness was increased by a factor of 4.6 in comparison with that of Li-doped Y2O3:Eu3+ thin films. 相似文献
7.
Sulphides of zinc and cadmium have been utilized effectively in various opto-electronic devices. In the present work cadmium zinc sulphide (Cd0.4Zn0.6S) thin film has been deposited on ultra clean glass substrate by a simple inexpensive screen-printing method using cadmium sulphide, zinc sulphide, anhydrous cadmium chloride and ethylene glycol. Cadmium chloride has been used as sintering aid and ethylene glycol as a binder. Effect of sintering aid on the optical and structural properties of prepared cadmium zinc sulphide film has been investigated. The optical band gap (Eg) of the film has been studied by using reflection spectra in wavelength range 325–600 nm. It is found that reflection spectra suffer a drastic fall at two places, which is indicative of two band gaps of film viz. 2.38 eV and 2.9 eV corresponding to CdS and Cd0.6Zn0.4S, respectively. This is suggestive of the fact that cadmium zinc sulphide is a wide band gap semiconducting material. X-ray diffraction also confirms the formation of Cd0.6Zn0.4S composition. 相似文献
8.
K. Goksen 《Journal of Physics and Chemistry of Solids》2008,69(10):2385-2389
Transmission and reflection measurements in the wavelength region 450-1100 nm were carried out on Tl4In3GaS8-layered single crystals. The analysis of the room temperature absorption data revealed the presence of both optical indirect and direct transitions with band gap energies of 2.32 and 2.52 eV, respectively. The rate of change of the indirect band gap with temperature dEgi/dT=-6.0×10−4 eV/K was determined from transmission measurements in the temperature range of 10-300 K. The absolute zero value of the band gap energy was obtained as Egi(0)=2.44 eV. The dispersion of the refractive index is discussed in terms of the Wemple-DiDomenico single-effective-oscillator model. The refractive index dispersion parameters: oscillator energy, dispersion energy, oscillator strength and zero-frequency refractive index were found to be 4.87 eV, 26.77 eV, 8.48×1013 m−2 and 2.55, respectively. 相似文献
9.
The photoluminescent (PL) emission and excitation behaviour of green-emitting CaAl2S4:Eu2+ powder phosphor is reported in detail. CaAl2S4:Eu2+ emission provides good CIE colour coordinates (x=0.141; y=0.721) for the green component in display applications. Powder with a dopant concentration of 8.5 mol% shows the highest luminescence efficiency. Temperature dependence of the radiative properties, such as luminescence intensity and decay time, was investigated. In particular, the Stokes shift, the mean phonon energy, the redshift, the energy of the f→d and d→f transition and the crystal field splitting of the CaAl2S4:Eu2+ emission were determined. The thermal quenching of the emission was examined. 相似文献
10.
S. Lysenko 《Applied Surface Science》2006,252(15):5512-5515
Vanadium dioxide shows a passive and reversible change from a monoclinic insulator phase to a metallic tetragonal rutile structure when the sample temperature is close to and over 68 °C. As a kind of functional material, VO2 thin films deposited on fused quartz substrates were successfully prepared by the pulsed laser deposition (PLD) technique. With laser illumination at 400 nm on the obtained films, the phase transition (PT) occurred. The observed light-induced PT was as fast as the laser pulse duration of 100 fs. Using a femtosecond laser system, the relaxation processes in VO2 were studied by optical pump-probe spectroscopy. Upon a laser excitation an instantaneous response in the transient reflectivity and transmission was observed followed by a relatively longer relaxation process. The alteration is dependent on pump power. The change in reflectance reached a maximum value at a pump pulse energy between 7 and 14 mJ/cm2. The observed PT is associated with the optical interband transition in VO2 thin film. It suggests that with a pump laser illuminating on the film, excitation from the dθ,? - state of valence band to the unoccupied excited mixed dθ,?-π* - state of the conduction band in the insulator phase occurs, followed by a resonant transition to an unoccupied excited mixed dθ,?-π* - state of the metallic phase band. 相似文献
11.
Composite optical thin-film materials have received a significant amount of interest in order to relieve the material constraints on refractive indices as well as reducing the number of layers required in optical coating design. Amongst others binary zirconia-silica composite thin films have attracted considerable attentions due to their several favorable opto-mechanical properties. In the present studies such a composite system under certain compositional mixings displayed both refractive index and band gap supremacy over pure zirconia films violating the most popular Moss rule. This unexpected evolution has several practical applications one of which can be directly employed in extending the range of tunability of the refractive index. Besides, the probing of such a novel evolution through the analysis of ellipsometric refractive index modeling and morphological correlation functions has revealed several novel as well as superior microstructural properties in the composite thin film systems. All these characterization and analysis techniques distinctly indicate a strong interrelation between the microstructural ordering and superior optical properties of the present zirconia-silica codeposited composites. 相似文献
12.
Transparent Li-doped Gd2O3:Eu3+ thin-film phosphors were prepared by a modified sol-gel method. The effect of the Li+ ions on luminescent properties of the thin film was investigated. The results indicated that incorporation of Li+ ions into Gd2O3 lattice could result in a remarkable increase on photoluminescence or X-ray excited luminescence, and the strongest emission was observed from Gd1.84Li0.08Eu0.08O3−δ film, in which the intensity was increased by a factor of 1.9 or 2.3 in comparison with that of Gd1.92Eu0.08O3 film. And it could be achieved the highest intensity for sintering the Gd1.84Li0.08Eu0.08O3−δ film at 700 °C. Such a temperature is much lower than the typical solid-state reaction temperature for its powder phosphors. This kind of transparent thin-film phosphors may promise for application to micro X-ray imaging system. 相似文献
13.
Ö.F. Yüksel B.M. Basol H. Safak H. Karabiyik 《Applied Physics A: Materials Science & Processing》2001,73(3):387-389
Optical absorption spectra of CuInSe2 chalcopyrite semiconductor films prepared using a two-stage technique were investigated. In addition to absorption measurements,
energy-dispersive analysis of X-rays (EDAX) and X-ray diffraction measurements (XRD) were also performed. Direct bandgap energy
values for the CuInSe2 films were derived from the variation of (αhν)2 with energy. All the measurements were performed on samples with various Cu/In ratios. It was determined from the absorption
measurements that the materials have strong absorption at the fundamental band edge. The Eg values showed an increasing trend with decreasing Cu/In ratios.
Received: 26 May 2000 / Accepted: 31 October 2000 / Published online: 10 January 2001 相似文献
14.
Kyoo Sung Shim Ye Ran Jeong Byung Chun Choi Jong Seong Bae Jung Hwan Kim 《Applied Surface Science》2007,253(19):8146-8150
Li-doping has been used to improve luminescent characteristics of thin films. Influence of Li-doping on the crystallization, surface morphology and luminescent properties of GdVO4:Eu3+ films have been investigated. Crystallinity and surface morphology of thin films have been very important factors to determine luminescent characteristics and depended on the deposition conditions. The GdVO4:Eu3+ and Li-doped GdVO4:Eu3+ thin films have been grown using pulsed laser deposition method on Al2O3 (0 0 0 1) substrates at a substrate temperature of 600 °C under an oxygen pressure of 13.33-53.33 Pa. The crystallinity and surface morphology of the films were investigated using X-ray diffraction (XRD) and atomic force microscope (AFM), respectively. A broadband incoherent ultraviolet light source with a dominant excitation wavelength of 310 nm and a luminescence spectrometer have been used to measure photoluminescence spectra at room temperature. The emitted radiation was dominated by the red emission peak at 619 nm radiated from the transition of 5D0-7F2 of Eu3+ ions. Particularly, the peak intensity of Li-doped GdVO4 films was increased by a factor of 1.7 in comparison with that of GdVO4:Eu3+ films. The enhanced luminescence results not only from the improved crystallinity but also from the reduced internal reflections caused by rougher surfaces. The luminescent intensity and surface roughness exhibited similar behavior as a function of oxygen pressure. 相似文献
15.
Zeguo Tang 《Applied Surface Science》2009,255(21):8867-8873
Hydrogenated microcrystalline silicon films were deposited by glow discharge decomposition of SiH4 diluted in mixed gas of Ar and H2. By investigating the dependence of the film crystallinity on the flow rates of Ar and H2, we showed that the addition of Ar in diluted gas markedly improves the crystallinity due to an enhanced dissociation of SiH4. The infrared-absorption spectrum reveals that the fraction of SiH bonding increases with increasing the rate ratio of H2/(H2 + Ar). The surface roughness of the films increases with increasing the flow rate ratio of H2/(H2 + Ar), which is attributed to the decrease of massive bombardment of Ar ions in the plasma. Refractive index and absorption coefficient of the films were obtained by simulating the optical transmission spectra using a modified envelope method. Electrical measurements of the films show that the dark conductivity increases and the activation energy decreases with the ratio of H2/(H2 + Ar). A reasonable explanation is presented for the dependence of the microstructure and optoelectronic properties on the flow rate ratio of H2/(H2 + Ar). 相似文献
16.
Hyun Kyoung Yang G. Seeta Rama Raju Byung Chun Choi Jung Hwan Kim 《Applied Surface Science》2009,255(9):5062-5066
CaTiO3:Pr3+ films were deposited on different substrates such as Al2O3 (0 0 0 1), Si (1 0 0), MgO (1 0 0), and fused silica using pulsed laser deposition method. The crystallinity and surface morphology of these films were investigated by XRD and SEM measurements. The films grown on the different substrates have different crystallinity and morphology. The FWHM of (2 0 0) peak are 0.18, 0.25, 0.28, and 0.30 for Al2O3 (0 0 0 1), Si (1 0 0), MgO (1 0 0), and fused silica, respectively. The grain sizes of phosphors grown on different substrates were estimated by using Scherrer's formula and the maximum crystallite size observed for the thin film grown on Al2O3 (0 0 0 1). The room temperature PL spectra exhibit only the red emission peak at 613 nm radiated from the transition of (1D2 → 3H4) and the maximum PL intensity for the films grown on the Al2O3 (0 0 0 1) is 1.1, 1.4, and 3.7 times higher than that of the CaTiO3:Pr3+ films grown on MgO (1 0 0), Si (1 0 0), and fused Sillica substrates, respectively. The crystallinity, surface morphology and luminescence spectra of thin-film phosphors were highly dependent on substrates. 相似文献
17.
Nb2O5 nanorods have been prepared using water/ethanol media. The samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-visible absorption and photoluminescence spectroscopy. The as-prepared Nb2O5 nanorods appeared to be single pseudohexagonal (TT-Nb2O5) phase. From the photoluminescence spectrum, two emission bands at 407 and 496 nm, respectively, were observed. The origin of the luminescence was discussed in detail. 相似文献
18.
N.K. Sahoo 《Applied Surface Science》2006,253(4):1787-1795
Tailoring of the refractive index of optical thin films has been a very fascinating as well as challenging topic for developing new generation optical coatings. In the present work a novel Gd2O3/SiO2 composite system has been experimented and probed for its superior optical properties through phase modulated spectroscopic ellipsometry, spectrophotometry and atomic force microscopy. The optical parameters of the composite films have been evaluated using Tauc-Lorentz (TL) formulations. In order to derive the growth dependent refractive index profiles, each sample film has been modeled as an appropriate multilayer structure where each sub-layer was treated with the above TL parameterizations. All codeposited films demonstrated superiority with respect to the band gap and morphological measurements. At lower silica mixing compositions such as in 10-20% level, the composite films depicted superior spectral refractive index profile, band gap as well as the morphology. This aspect highlighted the fact that microstructural densifications in composite films can override the chemical compositions while deciding the refractive index and optical properties in such thin films. 相似文献
19.
Hyun Kyoung Yang Byung Kee Moon Jung Hyun Jeong Soung Soo Yi Kwang Ho Kim 《Journal of luminescence》2009,129(5):492-5107
YVO4:Sm3+ films were deposited on Al2O3 (0 0 0 1) substrates at various oxygen pressures changing from 13.3 to 46.6 Pa by using the pulsed laser deposition method. The crystallinity and surface morphology of these films were investigated by means of X-ray diffraction (XRD) and atomic force microscopy (AFM), respectively. The XRD pattern confirmed that YVO4:Sm3+ film has zircon structure and the AFM study revealed that the films consist of homogeneous grains ranging from 100 to 400 nm. The room temperature photoluminescence (PL) spectra showed that the emitted radiation was dominated by a reddish-orange emission peak at 602 nm radiating from the transition of (4G5/2→6H7/2). The crystallinity, surface morphology, and photoluminescence spectra of thin-film phosphors were highly dependent on the deposition conditions, in particular, the substrate temperature. The surface roughness and photoluminescence intensity of these films showed similar behavior as a function of oxygen pressure. 相似文献
20.
Aïssa Keffous Abdelhak Cheriet Noureddine Gabouze Yacine Boukennous Rabah Cherfi Lakhdar Guerbous Hamid Menari 《Applied Surface Science》2010,256(14):4591-4595
Hydrogenated amorphous SiC films (a-Si1−xCx:H) were prepared by dc magnetron sputtering technique on p-type Si(1 0 0) and corning 9075 substrates at low temperature, by using 32 sprigs of silicon carbide (6H-SiC). The deposited a-Si1−xCx:H film was realized under a mixture of argon and hydrogen gases. The a-Si1−xCx:H films have been investigated by scanning electronic microscopy equipped with an EDS system (SEM-EDS), X-ray diffraction (XRD), secondary ions mass spectrometry (SIMS), Fourier transform infrared spectroscopy (FTIR), UV-vis-IR spectrophotometry, and photoluminescence (PL). XRD results showed that the deposited film was amorphous with a structure as a-Si0.80C0.20:H corresponding to 20 at.% carbon. The photoluminescence response of the samples was observed in the visible range at room temperature with two peaks centred at 463 nm (2.68 eV) and 542 nm (2.29 eV). In addition, the dependence of photoluminescence behaviour on film thickness for a certain carbon composition in hydrogenated amorphous SiC films (a-Si1−xCx:H) has been investigated. 相似文献