首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anatase TiO2 nanobelts doped with rare earth (RE) ions Yb3+, Er3+ or Yb3+/Er3+ have been prepared using layered titanate nanobelts (LTO NBs) with RE ions as the precursor obtained by ion-exchange between LTO NBs and RE ions under hydrothermal process. Various measurement results demonstrate that the RE ions have doped into the lattice of TiO2, and the Er3+ or Yb3+/Er3+ doped nanobelts show strong visible up-conversion (UC) fluorescence under 980 nm excitation. The UC emission intensity of LTO NBs embedded with Er3+ or Yb3+/Er3+ is slightly higher than that of the corresponding TiO2 nanobelts doped with RE ions, whereas higher RE doping content leads to the decrease of UC emission intensity due to the concentration-quenching effect.  相似文献   

2.
A one-step solvothermal synthesis is proposed for the preparation of nanocrystalline single-phase TiO2 in the anatase form doped with lanthanide ions Eu3+, Er3+ and Sm3+. The structural properties of these products have been investigated by using X-ray powder diffraction, electron microscopy and Raman spectroscopy. Furthermore, the laser-excited luminescence spectra of the samples have been measured and analyzed. Following this route, the doping process turns out to be highly favorite and the resulting materials show an efficient luminescence in the visible region.  相似文献   

3.
采用坩埚下降法生长了Tm3+掺杂浓度为0.45%,0.90%,1.63%与3.25%(摩尔分数,x)的LiLuF4单晶.测试了样品的电感耦合等离子体原子发射光谱(ICP-AES)、X射线衍射(XRD)谱、吸收光谱(1400-2000 nm),并且分析比较了808 nm半导体激光器(LD)激发下荧光光谱. 结果表明:当Tm3+的浓度从0.45%变化到3.25%时,1800 nm处的荧光强度呈现了先增后减的趋势,当掺杂浓度约为0.90%时达到最大值,而位于1470 nm处的荧光强度则呈现了相反的趋势. Tm3+3F4能级的荧光衰减寿命随着掺杂浓度的增加不断减小. 1800 nm处的这种荧光强度变化归结于Tm3+离子间的交叉驰豫效应(3H6,3H43F4,3F4)和自身的浓度猝灭效应. 同时计算得到了浓度为0.90%的样品在1890 nm处的最大发射截面为0.392×10-20 cm2. 并且根据Judd-Ofelt 理论所得寿命和测定的荧光寿命计算得到了3F43H6的最大量子效率约为120%.  相似文献   

4.
The software in MATHLAB medium has been developed to model ESR spectra of paramagnetic centers in single crystals. By means of this program, the angular dependences of ESR spectra found in KY(WO4)2, potassium yttrium tungstate, doped with gadolinium were analyzed. The spectra analysis indicates that they are determined by the presence of Gd3+ ions with the electron spin S = 7/2 occupying the structural position of Y3+ ions in the crystal structure. Parameters of spin Hamiltonian were defined for the analyzed ESR spectrum of Gd3+. Unusual features of the analyzed ESR spectra have been discovered in the region of 9.5 GHz which remind by appearance SHF line. The researches made show the position of this line to correspond to the region of quasi-intersection of energetic levels, and along with the line shape it is most likely to reflect the peculiarities of the region in whose interval wave functions of the energetic levels undergo substantial modifications.  相似文献   

5.
The optical properties of fluorohafnate glasses doped with Pr3+, Nd3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+ have been studied. From optical absorption measurements and using Judd-Ofelt theory, JO parameters Ω2, Ω4, and Ω6 have been obtained. The Ω2 values indicate that fluorohafnate glasses present a less ionic character than fluorozirconates. Multiphonon emission probabilities for several levels of Er3+ and Ho3+ ions were determined by the difference between the measured rates and the calculated radiative transition probabilities. The results are almost the same as those found in fluorozirconates. Multiphonon emission probabilities are in agreement with the energy-gap law followed by rare-earth ions in crystals and glasses.  相似文献   

6.
In this article, TiO2 nanorods (aspect ratio >20) were prepared through a polyol process and doped with metal ions (Cu2+, Ni2+, Fe3+, and Cr3+). Compared with TiO2 nanoparticles, the TiO2 nanorods displayed relatively higher photocatalytic activity for the degradation of copper sulfophthalocyanine. Moreover, the photocatalytic activity was greatly enhanced when the metal ions were doped in the TiO2 nanorods.  相似文献   

7.
Visible up-conversion emissions at (435, 545, 580, 675 and 690 nm) and (437, 547 575 and 675 nm) have been observed from the sol-gel derived nano-crystalline Ho3+: BaTiO3 powders and thin films respectively, under 808 nm laser diode excitation emissions. Combined with the energy level structure of Ho3+ ions and the kinetics of the visible emissions, the up-conversion mechanism has been analyzed and explained. The blue, green and red emissions of both samples has been attributed to the ground state-directed transition from (5F1), (5S2) and (5F5), which are populated through excited state absorption (ESA) for 808 nm excitation. Nano-structure pure barium titanate and doped with different concentrations of Ho3+ ions in the from of powder and thin film have been prepared by sol-gel technique, using barium acetate (Ba(Ac)2), and titanium butoxide (Ti(C4H9O)4), as precursors. The thin films were prepared by sol-gel spin coating method. The as-grown thin films and powders were found to be amorphous, which crystallized to the tetragonal phase after heating at 750°C in air for 30 minutes. The crystallite sizes of the thin film and powder both doped with 4% Ho3+ ions was found to be equal to 11 and 16 nm, respectvely.  相似文献   

8.
《Chemical physics letters》2002,350(1-2):62-66
For the first time red-to-blue photon avalanche upconversion has been discovered and investigated in LiKYF5 crystals doubly doped with Tm3+ and Er3+ under laser excitation at the liquid nitrogen temperature. On the basis of the optical studies, an original model of the luminescent mechanisms, within which the Er3+ ions act as both donor and acceptor, and as a result sensitize the photon avalanche effect in Tm3+ by converting the optical excitation energy in its diffusion among the Tm3+ ions, is presented. It is assumed that all these mechanisms can be realized when the Er3+ concentration in crystals is relatively low in order to avoid direct interactions between the Er3+ ions.  相似文献   

9.
We report the synthesis of tetragonal-phase LiYF4 nanoparticles doped with upconverting lanthanide ions. The nanoparticles have been characterized by XRD, TEM, and luminescence decay studies. The size of the as-synthesized LiYF4 nanoparticles can be tuned by varying the precursor ratio of F to lanthanide ions. Passivated by oleic acid ligands, the LiYF4 nanoparticles can be readily dispersed in a wide range of nonpolar solvents including hexane, cyclohexane, dichloromethane, and toluene. The lanthanide-doped (Yb3+, Er3+, Tm3+, Ho3+) LiYF4 nanoparticles show intense upconversion emissions upon near infrared excitation at 980 nm. By varying composition and concentration of the dopant ions, the color output can be precisely modulated under single wavelength excitation with a diode laser.  相似文献   

10.
Ce3+ and/or Tb3+ doped LaPO4 nanofibers and microbelts have been prepared by a combination method of sol-gel process and electrospinning. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), photoluminescence (PL), low voltage cathodoluminescence (CL) and time-resolved emission spectra as well as kinetic decays were used to characterize the resulting samples. SEM and TEM results indicate the as-formed precursor fibers and belts are smooth, and the as-prepared nanofibers and microbelts consist of nanoparticles. The doped rare-earth ions show their characteristic emission under ultraviolet excitation, i.e. Ce3+ 5d-4f and Tb3+5D4-7FJ (J=6-3) transitions, respectively. The energy transfer process from Ce3+ to Tb3+ in LaPO4:Ce3+, Tb3+ nanofibers was further studied by the time-resolved emission spectra. Under low-voltage electron beam excitation, LaPO4:Ce3+, Tb3+ microbelt phosphors have a higher intensity than that of nanofiber phosphors.  相似文献   

11.
Some NiO-doped Bi2O3,La2O3-SrO-BaO-Nb2O5-B2O3 glasses giving the formation of strontium barium niobate Sr0.5Ba0.5Nb2O6 (SBN) crystals with a tetragonal tungsten-bronze structure through conventional crystallization in an electric furnace have been developed, and SBN crystal lines have been patterned on the glass surface by heat-assisted (250-300 °C) laser irradiation and scanning of continuous-wave Nd:YAG laser (wavelength: 1064 nm). The surface morphology and the quality of SBN crystal lines are examined from measurements of confocal scanning laser micrographs and polarized micro-Raman scattering spectra. The surface morphology of SBN crystal lines changes from periodic bump structures to homogeneous structures, depending on laser scanning conditions. It is suggested that the line patterned at the laser irradiation condition of laser power P=1 W and of laser scanning speed S=1 μm/s in 2NiO-4La2O3-16SrO-16BaO-32Nb2O5-30B2O3 glass has a possibility of the orientation of SBN crystals along the laser scanning direction. The present study demonstrates that the transition metal atom heat processing (i.e., a combination of cw Nd:YAG laser and Ni2+ ions) is a novel technique for spatially selected crystallization of SBN crystals in glass.  相似文献   

12.
12CaO?·?7Al2O3 doped with lanthanide is characterized by remarkable and technologically important up-conversion emission. However, the low up-conversion efficiency still remains the main limitation for practical applications. To improve the efficiency, bivalent alkaline earth ions (Mg2+, Sr2+, Ba2+)-tridoped Tm3+/Yb3+/12CaO?·?7Al2O3 were synthesized through a high-temperature solid-state reaction. The up-conversion luminescence properties of the samples were investigated by X-ray diffraction, fluorescence spectral measurement pump power, and fluorescence decay curves. The luminescence intensity of samples was significantly enhanced by bivalent alkaline earth ions. 12CaO?·?7Al2O3 doped with Sr2+ ions has stronger effects on up-conversion enhancement, which is better than Mg2+ and Ba2+. The up-conversion emission intensity was enhanced by 318 times and the red emission intensity by 218 times with 10?mol% Sr2+ ion. Additionally, the blue and red up-conversion emission peaks at 475 and 650?nm corresponding to energy transitions of 1G43H6 and 1G43F4, 3F23H6 were characterized using steady-state rate equations.  相似文献   

13.
The luminescence spectra of CsMnBr3, RbMnBr3 and CsMnI3 crystals doped with Er3+ have been investigated in the 10–300 K temperature range. These linear chain manganese salts behave as “pseudo” one-dimensional antiferromagnets. The temperature dependence of luminescence from the doped materials indicates a rapid thermally activated transfer of excitation energy from the Mn2+ ions of the bulk crystal to the Er3+ impurity centers. Analysis of the data suggests that energy migration occurs by two distinct processes with activation barriers of: 200 and 500 cm?1 for CsMnBr3, 180 and 500 cm?1 for RbMnBr3 and 300 and 650 cm?1 for CsMnI3. The behavior of CsMnxCd1-xBr3 crystals containing Er3+ clearly indicates that the process with the higher activation barrier corresponds to two- or three-dimensional exciton migration.  相似文献   

14.
The comparison between non-magnetic spin-Peierls (SP) and magnetic Néel ground states have been investigated in CuGeO3 doped with Zn2+, Ni2+ and Mn2+ ions by using the electron spin resonance (ESR) techniques in the temperature range of 3–300 K. It was concluded that the one-dimensional (1D) antiferromagnetic (AF) spin chain formed of spin-1/2 (Cu2+) ions is broken by spin-0 (Zn2+), spin-1 (Ni2+), and spin-5/2 (Mn2+) ions, giving uncoupled spins at the end of the chains that give extra contribution to the spectra at lower temperature. An almost linearly dependence of frequency of resonance field has been showed for X-, K- and Q-band spectra. By the analysis of resonance field–frequency relations, the effects of the internal field is refined and thus the spectroscopic g-factor and internal field were calculated to be g = 1.9386 and Hi = 148 G, respectively.  相似文献   

15.
Oxyfluoride glasses with a small amount of NiO are prepared using a conventional melt quenching technique, and the spatially selected crystallization of LaF3 and CaF2 crystals is induced on the glass surface by irradiations of continuous wave lasers with a wavelength of λ=1064 or 1080 nm. Dots and lines including LaF3 crystals are patterned by heat-assisted (300 °C) laser irradiations (λ=1064 nm) with a power of P=1 W and an irradiation time of 10 s for dots and a scanning speed of S=5 μm/s for lines. Lines consisting of CaF2 crystals are also patterned in an ErF3-doped oxyfluoride glass by laser irradiations (λ=1080 nm) with a power of P=1.7 W and a scanning speed of S=2 μm/s, and the incorporation of Er3+ ions into CaF2 crystals is confirmed from micro-photoluminescence spectrum measurements. It is proposed that the lines patterned by laser irradiations in this study are consisted of the composite of LaF3 or CaF2 nanocrystals and SiO2-based oxide glassy phase. It is demonstrated that a combination of Ni2+-dopings and laser irradiations is effective in spatially selected local crystallizations of fluorides in oxyfluoride glasses.  相似文献   

16.
Eu2+-doped inorganic-organic hybrid materials, which are potentially suitable for a tunable laser in the near ultra violet and blue region, were prepared through the photoreduction of Eu3+ ions in the materials under the irradiation of the fourth harmonic wave light (266 nm) of the Nd:YAG laser. The hybrid materials doped with Eu3+ ions were prepared from Si(OCH3)4, CH3Si(OCH3)3, EuCl3 and chloropropyltrimethoxysilane (CPTM). After the prehydrolized silica sol was added to the Eu3+-containing solution, Eu3+-doped transparent inorganic-organic hybrid material was obtained by drying at 50°C. The emission peak around 450–475 nm due to the charge transfer transition (5d-4f) of Eu2+ ions increased with the laser irradiation time. Eu3+ ions were effectively photoreduced to Eu2+ ions in pore-free materials prepared at high CPTM to Eu3+ ratios. Eu2+ ions were generated by the photodecomposition of the bond between Eu3+ and Cl (Cl or Cl(CH2)3 in CPTM).  相似文献   

17.
Transparent SiO2-Al2O3-NaF-YF3 bulk nano-composites triply doped with Ho3+, Tm3+ and Yb3+ were fabricated by melt-quenching and subsequent heating. X-ray diffraction and transmission electron microscopy measurements demonstrated the homogeneous precipitation of the β-YF3 crystals with mean size of 20 nm among the glass matrix, and rare earth ions were found to partition into these nano-crystals. Under single 976 nm laser excitation, intense red, green and blue upconversion emissions were simultaneously observed owing to the successive energy transfer from Yb3+ to Ho3+ or Tm3+. Various colors of luminescence, including bright perfect white light, can be easily tuned by adjusting the concentrations of the rare earth ions in the material. The overall energy efficiency of the white-light upconversion was estimated to be about 0.2%.  相似文献   

18.
Fluorescence and spectral hole burning properties of Eu3+ ions were studied in nanocrystals-precipitated SnO2-SiO2 glasses. The glasses were prepared to contain various amount of Eu2O3 using the sol-gel method, in which SnO2 nanocrystals were precipitated by heating in air. In the glasses containing Eu2O3 less than 1%, the Eu3+ ions were preferentially doped in the SnO2 nanocrystals and their fluorescence intensities were enhanced by the energy transfer due to the recombination of electrons and holes excited in SnO2 crystals. The SnO2 nanocrystals-precipitated glasses exhibited the persistent spectral holes with the depth of ∼25% of the total fluorescence intensities of the Eu3+ ions. With the increasing Eu2O3 concentration, the amount of SnO2 nanocrystals decreased and the Sn4+ ions formed the random glass structure together with the silica network. This structure change induced the fluorescence intensities and the hole depth to decrease.  相似文献   

19.
The kinetics and formation mechanism of doped corundum (α-Al2O3) from hydrargillite (γ-Al(OH)3) in supercritical water fluid (SCWF) in the presence of manganese ions are studied. It was ascertained that due to the reversible dehydroxylation in an aqueous medium, solid-phase transformation of hydrargillite into boehmite (γ-AlOOH) and then into corundum occurs with the formation of well-faceted corundum micro-crystals that are uniformly doped with manganese. It was found that when Mn2+ or MnO4 ions are introduced into the reaction medium, Mn5+, Mn4+, Mn3+, and Mn2+ ions are observed in the synthesized corundum. Meanwhile, the manganese ions form a complex defect in the corundum structure, which comprises oxygen vacancies and hydroxyl groups. The defects in corundum that emerge upon doping with manganese in SCWF are different from those in corundum doped during high-temperature synthesis.  相似文献   

20.
Summary The homogeneity of the distributions of doped V and Ti in Al2O3:V3+, Y3Al5O12:V3+, Al2O3:Ti3+, Y3Al5O12:Ti3+ single crystals was studied by means of laser emission microanalysis. The applied statistical methods include one-way variance analysis, two-way variance analysis, regression models and the gradient method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号