首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kin-ichi Oyama 《Tetrahedron》2004,60(9):2025-2034
We have succeeded in the first total synthesis of apigenin 7,4′-di-O-β-d-glucopyranoside (1a), a component of blue pigment, protodelphin, from naringenin (2). Glycosylation of 2 according to Koenigs-Knorr reaction provided a monoglucoside 4a in 80% yield, and this was followed by DDQ oxidation to give apigenin 7-O-glucoside (12a). Further glycosylation of 4′-OH of 12a with 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl fluoride (5a) was achieved using a Lewis acid-and-base promotion system (BF3·Et2O, 2,6-di-tert-butyl-4-methylpyridine, and 1,1,3,3-tetramethylguanidine) in 70% yield, and subsequent deprotection produced 1a. Synthesis of three other chiral isomers of 1a, with replacement of d-glucose at 7 and/or 4′-OH by l-glucose (1b-d), and four chiral isomers of apigenin 7-O-β-glucosides (6a,b) and 4′-O-β-glucosides (7a,b) also proved possible.  相似文献   

2.
New N-sulfonylpyrimidine derivatives 1-(p-toluenesulfonyl)uracil (1), 1-(p-toluenesulfonyl)thymine (2), 5-bromo-1-(p-toluenesulfonyl)uracil (3), 1-(methanesulfonyl)uracil (4), 1-(1-naphthylsulfonyl)uracil (5), and 1-(1-naphthylsulfonyl)thymine (6) were prepared by the condensation reaction of silylated pyrimidine derivatives with selected sulfonyl chlorides in acetonitrile. Some members of the series showed unexpected crystal properties as a consequence of their conformational chirality in the solid state. Compounds 1 and 5 exhibited chiral crystallization, which was, in the case of 1, accompanied by the formation of racemically twinned crystals regardless of the solvent used, while 5 gave a conglomerate of enantiomorphous crystals. For 2, 3, and 6, substituents at the C-5 position of the pyrimidine ring prevented chiral crystallization by influencing the crystal packing. Analysis of the crystal structures of 1, 4, and 5, reveals the influence of the arylsulfonyl group on the occurrence or absence of chiral crystallization.  相似文献   

3.
A novel class of thiacrown and azacrown ethers incorporating the 1,7-dioxaspiro[5.5]undecane spiroacetal ring system was prepared by reaction of ditosylate 5 with the appropriate dithiols 9a-c or protected diamine 12a. Spiroacetal ditosylate 5 in turn, was prepared from diol 3 via ozonolysis of bisallyl ether 7 followed by tosylation of the derived diol 8.  相似文献   

4.
The Ti(III)-promoted radical cyclization of epoxyenone 8 is described as the key step to access the diol 10 as a convenient starting material of the target molecules. The synthesis of β-(E)-endo-bergamoten-12-oic acid 2a from (+)-8,9-epoxycarvone 8 was successfully achieved by Suzuki-Miyaura coupling of the terminal alkene 20 with β-iodomethacrylate 21c, followed by deprotection and dehydration processes. Moreover, synthesis of the α-(E)-endo-1-hydroxy-bergamoten-12-oic acid derivative 34 was achieved by iterative elongation processes of the diol 10 lateral chain.  相似文献   

5.
The chemical analysis of a sample of Δ9-THC, which had been stored in an ethanol/propylene glycol solution for 5 years, resulted in the isolation of several hydroxylated Δ9-THC derivatives, the main of which were trans-cannabitriol monoethyl ether (4) and trans-propanediol ethers 7 and 8. cis-Cannabitriol monoethyl ether (5) and the oxidised derivatives 3 and 6 were detected in lesser amounts. The structure elucidation of the unprecedented cannabinoids 3, 5, 7 and 8 was achieved mainly by NMR techniques. Full NMR assignment of compounds 4 and 6 were also made. The detection of cannabitriol (6) and the corresponding solvent-adduct analogues (compounds 4-8) was in agreement with the decomposition mechanisms previously proposed for Δ9-THC. The isolation of the endoperoxide 3 represents indirect evidence of the existence of unstable precursors that were suspected to be intermediates in the non-enzymatic oxidation pathway of Δ9-THC. Both isomers of cannabitriol monoethyl ether exhibited weak affinity at either CB1 (Ki=2.25, 6.30 μM) or CB2 cannabinoid receptors (Ki=1.97, 3.13 μM), the trans isomer always being more potent than the cis isomer.  相似文献   

6.
We have developed a practical synthesis of the chiral lactam as a new chiral building block for alkaloid synthesis. Lipase-catalyzed kinetic resolution of hydroxylactam 8, followed by isolation-racemization of the chiral acetoxylactam 9 provided the optically pure hydroxylactam 8 in 96.0% yield with >99% ee after five cycles of kinetic resolution-racemization process. Chemical transformation of (S)-hydroxylactam 8 furnished chiral (−)-2-epi-lentiginosine (1) in 20% yield in 10 steps with no loss of enantiomeric excess.  相似文献   

7.
We have developed a chemoenzymatic synthesis of (R)-thiolactomycin (1) having a chiral quaternary carbon atom at C5. In the kinetic resolution of the thiotetronic acid precursor 4, both enantiomers were obtained with high enantiomeric excess by use of Chirazyme® L-2. Chemical transformations of the (R)-alcohol 4 provided the chiral (R)-thiolactomycin (1) in 36% yield in five steps.  相似文献   

8.
A highly efficient and stereo-controlled synthetic strategy has been developed to access syn-diarylheptanoids, for example, 2,3, 4, and 5b starting from d-glucose as a chiral pool. The 3-(R), 5-(S)-syn-diol stereochemistry present in these heptanoids was obtained after conserving C2 and C4 stereochemistry of d-glucose during the course of synthetic transformation. The key features of this synthetic strategy include: (i) conversion of d-glucose to a known chiral template 6 armored with the required 1,3-syn-diol stereochemistry as well as two terminal aldehyde functionalities for building up customized ‘diaryl wings’; (ii) conversion of 6 to 7 via an initial Wittig olefination at the C5-aldehyde; (iii) use of the hemiacetal 7 as a common intermediate to obtain the individual heptanoids via a second Wittig reaction at its anomeric center using appropriately chosen ylides.  相似文献   

9.
Oxidations of the 2-alkenylfurans 8a and 8b, using peroxy reagents, lead to the dienedione 9 and the furan epoxide 10, respectively. Treatment of the epoxide 10 with p-TSA in MeOH produces the enol ether cyclic ketal 12, which is rapidly isomerised to the furanmethanol ether 15, isolated in 80% yield. By contrast, when the propanol-substituted furan epoxide 23 was kept in CDCl3 containing traces of HCl for 2 h, a 3:2 mixture of Z- and E-isomers of the enol ether spiro ketals 25a and 25b was produced in >92% yield; after 24 h this mixture of isomers underwent dehydration leading to the corresponding enol ether triene 26 (70%). When a solution of the dienedione 9 in H2O-THF containing p-TSA was stirred at 25 °C for 20 h, the tertiary alcohol 27 was produced which, after a further 20 h was converted into the furan vicinal diol 29. Likewise, when the ‘cembranoid’ dienedione 31 was treated with p-TSA-H2O, the hydroxymethyl-substituted furanobutenolide 33 was produced in 40% yield. It is probable that the enol ether cyclic hemiketals 28 and 32/34, which are related to 12 and 25, and also to the naturally occurring cembranoids 1 and 2 found in corals, are transient intermediates in the conversions leading to 29 and 33 from 9 and 31, respectively.  相似文献   

10.
The nucleophilic conjugate addition of chiral formaldehyde N,N-dialkylhydrazones 1 to doubly activated cyclic alkenes 2-8 proceeds smoothly to afford the corresponding Michael adducts 14, 16, 18, 20, 22, 24, and 25 in variable yields and selectivities. The reactions take place either spontaneously or in the presence of MgI2 as a mild Lewis acid depending on the type of substrate. Release of the chiral auxiliary was achieved by transformation of the hydrazone moiety into acetals, dithioacetals or nitriles.  相似文献   

11.
l-(N-Cbz)-7-azaisotryptophan, l-(N-Cbz)-1a, a new isostere of tryptophan, was synthesized by reacting Li2-(N-Boc)-2-amino-3-picoline, Li2-(N-Boc)-2a, with appropriately protected l-aspartic acid followed by simple functional group manipulation. This synthetic success led us to access a set of analogs of azaisotryptophan (4ac; 6ac) as well as a new class of chiral amines (7ac; 8ac) for future application in asymmetric synthesis and design of homochiral ligands. Further, we have generalized the method substantiating a variety of new azaindol-2-yl derivatives (10aa10lc) with functionalized substituents. In a preliminary luminescence characterization, l-(N-Cbz)-1a has exhibited about 30 nm bathochromic shifted fluorescence emission compared to tryptophan and (N-Cbz)-tryptophan.  相似文献   

12.
Kinetic resolution of a racemic mixture of C2-symmetric 18-crown-6 diols (rac-1a) and 15-crown-5 diol (rac-1c) was achieved by lipase-catalyzed acetylation. The enantiomeric excess of the chiral crown diols (95% ee and 82% ee) was determined by 1H NMR spectroscopy, using (R)-(+)-1-(1-naphthyl)ethylammonium hydrochloride as a shift reagent. The C2-symmetric chiral 15-crown-5 diol (>95% ee) was also obtained by kinetic resolution of the racemic diacetate (rac-2c) using lipase-catalyzed solvolysis.  相似文献   

13.
Eight new organotin (IV) carboxylates, (R3Sn)4(nap)4 (R = Me 1, n-Bu 2), [(R3Sn) (nap)]n (R = Ph 3, PhCH24), (R2Sn) (nap)2 (R = n-Bu 5, Ph 6, PhCH27) and {[R2Sn(nap)]2O}2 (R = Me 8) (nap = (S)-(+)-6-methoxy-α-methyl-2-naphthaleneaceto anion) have been synthesized. All of the complexes have been characterized by elemental analysis, FT-IR, NMR (1H, 13C and 119Sn) spectra. Among these complexes, complexes 1, 3, 5 and 8 were also characterized by X-ray crystallography diffraction analysis, and the data of X-ray crystallography diffraction indicated that complexes 1, 3 and 5 are new chiral organotin (IV) carboxylates complexes. The structural analyses show that complex 1 has a tetranuclear Sn4O8 macrocycle structure, complex 3 has a 1D spring-like chiral helical chain with a columnar channel, complex 5 possesses a dimer structure, and complex 8 has a supramolecular chainlike ladder structure through weak intermolecular non-covalent OO interactions.  相似文献   

14.
MgMe2 (1) was found to react with 1,4-diazabicyclo[2.2.2]octane (dabco) in tetrahydrofuran (thf) yielding a binuclear complex [{MgMe2(thf)}2(μ-dabco)] (2). Furthermore, from reactions of MgMeBr with diglyme (diethylene glycol dimethyl ether), NEt3, and tmeda (N,N,N′,N′-tetramethylethylenediamine) in etheral solvents compounds MgMeBr(L), (L = diglyme (5); NEt3 (6); tmeda (7)) were obtained as highly air- and moisture-sensitive white powders. From a thf solution of 7 crystals of [MgMeBr(thf)(tmeda)] (8) were obtained. Reactions of MgMeBr with pmdta (N,N,N′,N″,N″-pentamethyldiethylenetriamine) in thf resulted in formation of [MgMeBr(pmdta)] (9) in nearly quantitative yield. On the other hand, the same reaction in diethyl ether gave MgMeBr(pmdta) · MgBr2(pmdta) (10) and [{MgMe2(pmdta)}7{MgMeBr(pmdta)}] (11) in 24% and 2% yield, respectively, as well as [MgMe2(pmdta)] (12) as colorless needle-like crystals in about 26% yield. The synthesized methylmagnesium compounds were characterized by microanalysis and 1H and 13C NMR spectroscopy. The coordination-induced shifts of the 1H and 13C nuclei of the ligands are small; the largest ones were found in the tmeda and pmdta complexes. Single-crystal X-ray diffraction analyses revealed in 2 a tetrahedral environment of the Mg atoms with a bridging dabco ligand and in 8 a trigonal-bipyramidal coordination of the Mg atom. The single-crystal X-ray diffraction analyses of [MgMe2(pmdta)] (12) and [MgBr2(pmdta)] (13) showed them to be monomeric with five-coordinate Mg atoms. The square-pyramidal coordination polyhedra are built up of three N and two C atoms in 12 and three N and two Br atoms in 13. The apical positions are occupied by methyl and bromo ligands, respectively. Temperature-dependent 1H NMR spectroscopic measurements (from 27 to −80 °C) of methylmagnesium bromide complexes MgMeBr(L) (L = thf (4); diglyme (5); NEt3 (6); tmeda (7)) in thf-d8 solutions indicated that the deeper the temperature the more the Schlenk equilibria are shifted to the dimethylmagnesium/dibromomagnesium species. Furthermore, at −80 °C the dimethylmagnesium compounds are predominant in the solutions of Grignard compounds 4-6 whereas in the case of the tmeda complex7 the equilibrium constant was roughly estimated to be 0.25. In contrast, [MgMeBr(pmdta)] (9) in thf-d8 revealed no dismutation into [MgMe2(pmdta)] (12) and [MgBr2(pmdta)] (13) even up to −100 °C. In accordance with this unexpected behavior, 1:1 mixtures of 12 and 13 were found to react in thf at room temperature yielding quantitatively the corresponding Grignard compound 9. Moreover, the structures of [MgMeBr(pmdta)] (9c), [MgMe2(pmdta)] (12c), and [MgBr2(pmdta)] (13c) were calculated on the DFT level of theory. The calculated structures 12c and 13c are in a good agreement with the experimentally observed structures 12 and 13. The equilibrium constant of the Schlenk equilibrium (2 9c ? 12c + 13c) was calculated to be Kgas = 2.0 × 10−3 (298 K) in the gas phase. Considering the solvent effects of both thf and diethyl ether using a polarized continuum model (PCM) the corresponding equilibrium constants were calculated to be Kthf = 1.2 × 10−3 and Kether = 3.2 × 10−3 (298 K), respectively.  相似文献   

15.
The reaction between ZnCl2 and (S)-N-ethyl-N-phenyl-2-pyrrolidinemethanamine (S-EPP) as a chiral ligand affords [ZnCl2(S-EPP)], whose structure has been determined by X-ray crystallography. [ZnEt2(S-EPP)] has demonstrated high activity toward the polymerization of rac-lactide with a maximum turnover frequency (TOF) of 121. Despite the intended stereocontrol by employing a chiral ligand, however, the observed heterotacticity was limited to under 0.6. The MWDs of the PLAs were found to be modulated by changing the solvent or controlling the concentration of the monomer in the solution. The glass transition temperature (Tg) was critically dependent on the MW within the narrow MWD regime, but the dependence became significantly shallow when the MWD was broadened.  相似文献   

16.
Epoxidations of trans-β-methylstyrene, trans-stilbene and trans-methyl p-methoxycinnamate using chiral dioxiranes derived from both enantiopure diastereomers of α-fluoro cyclohexanones, (2S, 5R)-3a-6a and (2R, 5R)-3e-6e are studied and compared. From ab initio calculations at the HF/6-31G level of conformational inter-conversion for (2S, 5R)-D5a and (2R, 5R)-D5e dioxiranes it was found that, due to the α-fluorine atom, conformer K1 is more stable in the case of (2S, 5R)-D5a while conformer K2 is more stable in the case of (2R, 5R)-D5e. However, in both cases, the more stable conformers, K1 and K2, undergo rapid inter-conversion. Therefore, based on slow epoxidation reactions and rapid ring inversion of six-membered ring dioxiranes the Curtin-Hammett principle holds. Conformation K2 with axial fluorine having been found to be more reactive, the inversion of configuration observed for the epoxides obtained with ketones 3e-6e (compared with ketones 3a-6a) could be rationalized from competitive reactions of K2 and K1 conformations leading to simultaneous production of both (−) and (+) epoxides in the case of ketones 3e-6e.  相似文献   

17.
In this Letter, we described the synthesis of new 5-(5-amino-1-aryl-1H-pyrazole-4-yl)-1H-tetrazoles 2ac from 5-amino-1-aryl-1H-pyrazole-4-carbonitriles 1ac as well as the unexpected 1H-pyrazolo[3,4-d]pyrimidine derivatives 6ac from 5-amino-1-aryl-3-methyl-1H-pyrazole-4-carbonitriles 4ac, instead of 5-(5-amino-1-aryl-3-methyl-1H-pyrazole-4-yl)-1H-tetrazoles 5ac as desired. In an attempt to obtain these tetrazole derivatives containing the methyl group at C3-position in the pyrazole ring, the amino group in 5-amino-1-(4-methoxyphenyl)-3-methyl-1H-pyrazole-4-carbonitrile 4c was protected by the reaction with sodium hydride and di-tert-butyl-dicarbonate (Boc). The tetrazole derivative 5c was synthesized from the protected compound 7c using analogue methodology to obtain 2ac and 6ac.  相似文献   

18.
A series of chiral organotin halides containing 2-(4-R)-oxazolinyl-o-carboranes (R = i-propyl 1, t-butyl 2; CabOxa) was prepared from o-carborane with a chiral oxazoline auxiliary. X-ray structural analysis of the representative chiral organotin halide, [2-(4-i-propyl)-oxazolinyl-o-carboranyl]SnMe2Br (4), revealed the formation of a stable penta-coordinated tin center due to a N → Sn interaction. Similar O → Sn assisted intramolecular penta-coordinated tin complexes (9 and 10) were prepared from methoxy-o-carborane ligands, MeOCH(Z)-o-carborane (Z = H 7, Ph 8; CabOMe), respectively, and a rigid o-carboranyl backbone provided the basic skeleton for the facile formation of organotin complexes.  相似文献   

19.
Chiral conjugated polymers P-1 and P-2 were synthesized by the polymerization of (R)-3,3′-diiodo-2,2′-bisbutoxy-1,1′-binaphthalene ((R)-M-1) and (S)-3,3′-diiodo-2,2′-bisbutoxy-1,1′-binaphthalene ((S)-M-1) with 2,5-bis(4-vinylphenyl)-1,3,4-oxadiazole (M-2) under Pd-catalyzed Heck coupling reaction, respectively. Both monomers and polymers were analysed by NMR, MS, FT-IR, UV, DSC-TG, fluorescent spectroscopy, GPC and CD spectra. The chiral conjugated polymers exhibit strong Cotton effect in their circular dichroism (CD) spectra indicating a high rigidity of polymer backbone. CD spectra of polymers P-1 and P-2 are almost identical and have opposite signs for their position. These polymers have strong blue fluorescence.  相似文献   

20.
1-Fluoroindan-1-carboxylic acid (FICA) (1) was designed and synthesized as its methyl ester (FICA Me ester) (4) in order to develop an efficient chiral derivatizing agent (CDA) which excels α-methoxy-α-(trifluoromethyl)phenylacetic acid (MTPA) in capability. FICA Me ester (4) was prepared by fluorination of methyl 1-hydroxyindan-1-carboxylate (3) with (diethylamino)sulfur trifluoride (DAST) and derived to the esters of racemic secondary alcohols by ester exchange reaction. The resulting ΔδF value was large in the case of 2-butyl ester of FICA (5a), whereas not detectable in the case of the corresponding MTPA ester (6a). The magnitude of the ΔδH values was similar to that of MTPA esters. The diastereomers of (R)-(−)-8-phenylmenthyl ester of FICA (5i) was separated and their 1H NMR analyses revealed that the concept of the modified Mosher's method was successfully applied to 5i.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号