共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis of C6F13CH2C(CFCFCF3)N-C2H4-C6H5 (11) from the addition of H2N-C2H4-C6H5 onto C6F13CH2CF2CF2CFHCF3 (3) is presented. C6F13CH2CF2CF2CFHCF3 (3) and C6F13CH2CF2CF(CF3)CF2H (3′) isomers were obtained from the thermal stepwise cotelomerization of vinylidene fluoride and hexafluoropropene with C6F13I, followed by the selective reduction of the iodine end atom. At 200 °C, the 3/3′ molar ratio reached 9.0. In contrast to selective reduction, dehydrofluorination led to various derivatives, which were characterized by 1H NMR and 19F NMR spectroscopy, and hence a reaction pathway could be suggested. The grafting of an amine containing an aromatic ring onto the cotelomers based on VDF and HFP occurred selectively on VDF/HFP diad and, in some instances a further step involving the formation of an imine was observed. The addition of 2-phenylethylamine onto the dehydrofluorinated intermediates was found to be quantitative. 相似文献
2.
Emil C. Buruiana Tinca Buruiana Hahui Lenuta Thomas Lippert Lukas Urech A. Wokaun 《Journal of polymer science. Part A, Polymer chemistry》2006,44(18):5271-5282
1‐(Phenyl)‐3‐(2‐acryloyloxyethyl)‐3‐methyl triazene‐1 (M1) and 1‐(p‐nitrophenyl)‐3‐(2‐acryloyloxyethyl)‐3‐methyl triazene‐1 (M2) were synthesized to study the substituent effect of the triazene unit on the copolymerization with methyl methacrylate (MMA). From the 1H NMR spectra of the resulting copolymers, their compositions were determined to be 1:3.18 M1/MMA and 1:2.45 M2/MMA, respectively. The polymers were examined with respect to their structure, thermal properties, and surface morphology. The influence of the triazene structure on the photosensitive properties of the copolymers exposed to ultraviolet/laser irradiation was also investigated and compared with that of the parent derivatives. The copolymer containing the phenyl triazene chromophore as the photochemically most active group exhibited a low threshold of ablation and a high etching rate for fluences under 400 mJ cm?2. Scanning electron microscopy images confirm the formation of ablated craters more clearly in the copolymer made with M1, for which the thermal effects of the ablation mechanism were visible only with 2500× magnification. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5271–5282, 2006 相似文献
3.
This paper describes the synthesis of phosphonic acids (R-S-(CH2)2-PO(OH)2) containing a perfluoroalkylated chain (R = C6F13-(CH2)2, C8F17-(CH2)2) or an alkyl group (R = C12H25, C18H37). These compounds, obtained in excellent yield by telomerization of vinyl phosphonic acid in the presence of alkylated or perfluorinated mercaptans used as transfer agents, were characterized by 1H, 19F and 31P nuclear magnetic resonance. Thermal characterization by differential scanning calorimetry (DSC) showed the presence of mesophases for compounds containing C8F17 and C18H37 end groups. A lamellar structure with a layered or bilayered organization was identified by small angle X-ray scattering (SAXS). Adhesion of these compounds on aluminum surfaces is improved by the presence of phosphonic groups. Hydrophobic properties of coated aluminum surfaces are enhanced by fluorinated groups. 相似文献
4.
E. Ortiz A. Cuán C. Badillo C.M. Cortés‐Romero Q. Wang L. Noreña 《International journal of quantum chemistry》2010,110(13):2411-2417
A theoretical study of poly(vinylidene flouride‐trifluoroethylene) and poly(vinylidene fluoride‐chlorotrifluoroethylene, is presented. By density functional theory calculations, some of the properties of these materials have been obtained. Among such properties, the dipolar moment and the energies associated to the structural changes. The B3LYP functional and 6311+G(d,p) bases set were used with Gaussian program. Calculations associated to different conformations were carried out to get insight about the involved phase changes. The energetic, charges, and dipole moment were calculated. The conformations, namely, I = Tp, II = TGa, and III = TGp, where T means trans and G means gauche, for the two polymers aforementioned were compared with the poly(vinilydene fluoride) studies previously obtained. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem 110:2411–2417, 2010 相似文献
5.
Hui Miao 《Journal of fluorine chemistry》2010,131(12):1356-1361
The commercial hyperbranched aliphatic polyols (Hn) were modified by thioglycolic acid (TA) and hexafluorobutyl acrylate (HFBA) or dodecafluoroheptyl methacrylate (DFHMA) to prepare a series of fluorinated hyperbranched polyesters. For comparison, a linear fluorinated polymer, poly(n-BMA-co-DFHMA), was synthesized through the copolymerization of n-butyl methacrylate (BMA) and DFHMA. The molecular structures were characterized by 1H NMR spectroscopic analysis. The synthesized polymers were incorporated into UV-curable formulations as additives, and exposed to a UV lamp. After UV curing, the wettability of the films was investigated by contact angle measurement with water and 1-bromonaphthalene. The results showed that both the hydrophobicity and oleophobicity were greatly enhanced. Moreover, the fluorinated hyperbranched polymers possessed better water and oil repellency than the copolymer poly(n-BMA-co-DFHMA) at a very low concentration. The surface F/C ratio values of the cured films were detected by XPS analysis, and the film with TAH20-DFHMA showed the highest F/C ratio value, indicating its most efficient aggregation effect at the film surface. 相似文献
6.
Poly(vinylidene fluoride)/silica (PVDF/SiO2) hybrid composite films were prepared via sol–gel reactions from mixtures of PVDF and tetraethoxysilane in dimethylacetamide. Their morphology, crystalline structure, and thermal, mechanical, and electrical properties were examined. For morphology measurements, scanning electron microscopy and optical microscopy were applied. X‐ray diffraction and infrared analyses showed that the crystalline structure of PVDF was not changed much by the addition of SiO2, indicating that there was no interaction between PVDF and SiO2. With increasing SiO2 content, the melting temperature rarely changed, the degree of crystallinity and the dielectric constant decreased, and the decomposition temperature slightly increased. A PVDF/SiO2 hybrid composite film with 5 wt % SiO2 exhibited balanced mechanical properties without a severe change in the crystalline structure of PVDF, whereas for the hybrid composites with higher SiO2 contents (>10 wt %), the mechanical properties were reduced, and the spherulite texture of PVDF was significantly disrupted by the presence of SiO2 particles. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 40: 19–30, 2002 相似文献
7.
Masayuki Nagai Koh Nakamura Hiroki Uehara Tetsuo Kanamoto Yoshiyuki Takahashi Takeo Furukawa 《Journal of Polymer Science.Polymer Physics》1999,37(18):2549-2556
Oriented poly(vinylidene fluoride) (PVDF) films with β‐form crystals have been commonly prepared by cold drawing of a melt‐quenched film consisting of α‐form crystals. In this study, we have successfully produced highly oriented PVDF thin films (20 µm thick) with β‐crystals and a high crystallinity (55–76%), by solid‐state coextrusion of a gel film to eight times the original length at an established optimum extrusion temperature of 160°C, some 10°C below the melting temperature. The resultant drawn films had a highly oriented (orientation function fc = 0.993) fibrous structure, showing high mechanical properties of an extensional elastic modulus of 8.3 GPa and tensile strength of 0.84 GPa, along the draw direction. Such highly oriented and crystalline films exhibited excellent ferroelectric and piezoelectric properties. The square hysteresis loop was significantly sharper than that of a conventional sample. The sharp switching transient yielded the remnant polarization Pr of 90 mC/m2, and the electromechanical coupling factor kt was 0.24 at room temperature. These values are about 1.5 times greater than those of a conventional β‐PVDF film. Thus, solid‐state coextrusion near the melting point was found to be a useful technique for the preparation of highly oriented and highly crystalline β‐PVDF films with superior mechanical and electrical properties. The morphology of the extrudate relevant to such properties is discussed. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2549–2556, 1999 相似文献
8.
Thermal and redox-induced telomerizations of vinylidene fluoride (VDF) with linear (n-C4F9I) or branched (i-C3F7I) perfluoroalkyl iodides have been performed. In both cases, thermal telomerizations led to telomeric-type distributions of the first five (from linear telogen) or the first three (from branched telogen) adducts produced, with better yields at higher temperatures. The redox-initiated telomerization was more selective since it led to the first two adducts only. For both reactions, mono- and di-adducts were isolated and characterized by 1H and 19F NMR spectroscopy. Interestingly, both the diadducts were composed of two isomers (i.e. the expected telomer and RFCH2CF2CF2CH2I). Two mechanisms are proposed and it is assumed that the products may be obtained either by chain propagation or by stepwise telomerization. In addition, attack of the electrophilic radical on the nucleophilic side of VDF is discussed. 相似文献
9.
Koh Nakamura Masayuki Nagai Tetsuo Kanamoto Yoshiyuki Takahashi Takeo Furukawa 《Journal of Polymer Science.Polymer Physics》2001,39(12):1371-1380
Gel films of poly(vinylidene fluoride) (PVDF) consisting of α‐form crystals were drawn uniaxially by solid‐state coextrusion to extrusion draw ratios (EDR) up to 9 at an optimum extrusion temperature of 160 °C, about 10°C below the melting temperature (Tm). The development of an oriented structure and mechanical and electrical properties on coextrusion drawing were studied as a function of EDR. Wide‐angle X‐ray diffraction patterns showed that the α crystals in the original gel films were progressively transformed into oriented β‐form crystals with increasing EDR. At the highest EDR of 9 achieved, the drawn product consisted of a highly oriented fibrous morphology with only β crystals even for the draw near the Tm. The dynamic Young's modulus along the draw direction also increased with EDR up to 10.5 GPa at the maximum EDR of 9. The electrical properties of ferroelectricity and piezoelectricity were also markedly enhanced on solid‐state coextrusion. The D–E square hysteresis loop became significantly sharper with EDR, and a remanent polarization Pr of 100 mC/m2 and electromechanical coupling factor along the thickness direction kt of 0.27 were achieved at the maximum EDR of 9. The crystallinity value of 73–80% for the EDR 9 film, estimated from these electrical properties, compares well with that calculated by the ratio of the crystallite size along the chain axis to the meridional small‐angle X‐ray scattering (SAXS) long period, showing the average thickness of the lamellae within the drawn β film. These results, as well as the appearance of a strong SAXS maximum, suggest that the oriented structure and properties of the β‐PVDF are better explained in terms of a crystal/amorphous series arrangement along the draw axis. Further, the mechanical and electrical properties obtained in this work are the highest among those ever reported for a β‐PVDF, and the latter approaches those observed for the vinylidene fluoride and trifluoroethylene copolymers. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1371–1380, 2001 相似文献
10.
The radical homopolymerisation in acetonitrile of vinylidene fluoride (or 1,1-difluoroethylene, VDF) and the copolymerisation of VDF with hexafluoropropylene (HFP) initiated by bis(trifluoromethyl)peroxy dicarbonate are presented. Different reactions and different reactants were chosen to monitor the polymerisation in terms of initiating radicals generated from this initiator. Homopolymers and copolymers thus obtained were characterised by and NMR spectroscopy. From the assignments of the characteristic signals, an overall reaction mechanism is proposed that explains each step of the polymerisation. Particularly, an interpretation of the polymer microstructures and the presence of end-groups arising from the radical initiator as well as from eventual transfers is suggested. Among some of the microstructures, the trifluoromethoxy end-group was noted to be present in both PVDF and poly(VDF-co-HFP) (co)polymers, as generated from the decomposition of the initiator. This trifluoromethoxy end-group enabled the assessment of the molecular weights of PVDF and poly(VDF-co-HFP) (co)polymers. Thermal properties of the copolymers were also determined, showing that original fluoroelastomers possessing CF3 end-groups are obtained endowed with low Tg and good thermal stability. 相似文献
11.
G. Mladenov B. Ameduri G. Kostov R. Mateva 《Journal of polymer science. Part A, Polymer chemistry》2006,44(4):1470-1485
The synthesis of original fluorinated (co)telomers containing vinylidene fluoride (VDF) or VDF and hexafluoropropene (HFP) was achieved by radical telomerizations and (co)telomerizations of VDF (or VDF and HFP) in the presence of 1, 6‐diiodoperfluorohexane via a semisuspension process. tert‐Butyl peroxypivalate (TBPPi) was used as an efficient thermal initiator. The numbers of VDF and VDF/HFP base units in the (co)telomers were determined by 19F and 1H NMR spectroscopy. They ranged from 10 to 190 VDF base units. Fluorinated telomers of various molecular weights (1200–12,600 g/mol) were obtained by the alteration of the initial [1,6‐diiodoperfluorohexane]0/[fluoroalkenes]0 and [TBPPi]0/[fluoroalkenes]0 molar ratios. The thermal properties of these fluorinated (co)telomers, such as the glass‐transition temperature and melting temperature, were examined. As expected, these telomers exhibited good thermal stability. They were stable at least up to 350 °C. The compounds containing more than 30 VDF units were crystalline, whereas all those containing VDF‐co‐HFP were amorphous with elastomeric properties, whatever the number was of the fluorinated base units. The structures of I–(VDF)n–RF–(VDF)m–I and I–(HFP)x(VDF)n–RF–(VDF)m(HFP)y–I (co)telomers were obtained, and the defects of the VDF chain and the ? CH2CF2I and ? CF2CH2I functionalities were studied successfully (where RF = C6F12). The functionality in the iodine atoms was modified: the higher the VDF content in the telomers, the lower the normal end functionality (? CH2CF2I) and the higher the reversed extremity (? CF2CH2I). In addition, the percentage of defects increased when the number of VDF units increased. The molecular weights and molecular weight distributions of different telomers and cotelomers were also studied. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1470–1485, 2006 相似文献
12.
The preparation and characterization of melt‐intercalated poly(vinylidene fluoride) (PVDF)/clay nanocomposites are reported. Organophilic clay (clay treated with dimethyl dihydrogenated tallow quaternary ammonium chloride) was used for the nanocomposite preparation. The composites were characterized with X‐ray diffraction (XRD), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA). XRD results indicated the intercalation of the polymer in the interlayer spacing. The incorporation of clay in PVDF resulted in the β form of PVDF. DSC nonisothermal curves showed an increase in the melting and crystallization temperatures along with a decrease in crystallinity. Isothermal crystallization studies show an enhanced rate of crystallization with the addition of clay. DMA indicated significant improvements in the storage modulus over a temperature range of ?100 to 150 °C. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 31–38, 2003 相似文献
13.
Studies on graphite flakes with a lateral size greater than 50 μm, having a large number of stacked collapse blocks, are neglected and replaced by graphene nanosheets or by powdered graphite, which can be obtained from graphite through chemical or physical exfoliation, as filler in polymer composites. Besides, the production of graphene nanosheets or the purification of powdered graphite uses a high concentration of strong and toxic acids that pollutes the environment. These processes are extremely time-consuming and generate an expensive product. Composites of poly(vinylidene fluoride) (PVDF) were prepared via extrusion with graphite flakes with up to 60 μm thick and 700 μm lateral size, in the range from 0.1 to 5% m/m. The quality of graphite flakes was analyzed by thermogravimetric analysis, x-ray diffraction (XRD), Raman spectroscopy, Fourier-transform infrared spectroscopy, and scanning electron microscopy. The increase in the graphite content in the PVDF matrix improved thermal resistance while showed an increase in the degree of crystallinity up to 25% by XRD and 43% by differential scanning calorimetry, approximately. Although the graphite acted as a nucleating agent, the content of the PVDF beta phase did not change. In the composites with up to 2.0% of graphite, a significant increase in mechanical properties, 13% modulus, and 36% in the storage modulus, evaluated by thermodynamic-mechanical analysis and tensile tests. In the analyses of time-domain nuclear magnetic resonance and oscillatory rheology in parallel plates, it was noticed that the increase of mechanical properties is due to the reinforcing effect along with the lubricant protection of stacked graphene sheets, attenuating the stress and friction between the polymer chains. Therefore, even though graphite flakes are inexpensive, that filler without any treatment at low contents are capable of significantly improving the performance of PVDF. This work suggests that these composites could be employed in applications such as electrical insulator with less energy dissipation, and also in oil pipelines, specifically to replace PVDF-based terpolymers or mixtures thereof, and polyamide-11 in flexible risers as a barrier layer, improving their performance. 相似文献
14.
Random copolymers of 65% vinylidene fluoride and 35% trifluoroethylene were reacted with an organic peroxide, in combination with a free‐radical trap, to yield networks of high crosslink density. Crystallization subsequent to the crosslinking yielded ferroelectric materials exhibiting large electrostrictive strains. The magnitude of the electromechanical response increased with an increasing degree of crosslinking, even though this reduced the crystallinity. For the most crosslinked sample, longitudinal (thickness) strains as high as 12% were induced at an electric field of 9 MV/m. This electrostrictive performance exceeded that obtained to date with any poly(vinylidene fluoride) material. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1975–1984, 2002 相似文献
15.
L. Sauguet B. Ameduri B. Boutevin 《Journal of polymer science. Part A, Polymer chemistry》2007,45(10):1814-1834
The radical co‐ and terpolymerization of perfluoro(4‐methyl‐3,6‐dioxaoct‐7‐ene) sulfonyl fluoride (PFSVE) with 1,1‐difluoroethylene (or vinylidene fluoride, VDF or VF2), hexafluoropropene (HFP), chlorotrifluoroethylene (CTFE), and bromotrifluoroethylene (BrTFE) is presented. Although PFSVE could not homopolymerize under radical initiation, it could be copolymerized in solution under a radical initiator with VDF, while its copolymerizations with HFP or CTFE led to oligomers in low yields. The terpolymerizations of PFSVE with VDF and HFP, with VDF and CTFE, or with VDF and BrTFE also led to original fluorinated terpolymers bearing sulfonyl fluoride side‐groups. The conditions of co‐ and terpolymerization were optimized in terms of the nature and the amount of the radical initiators, of the nature of solvents (fluorinated or nonhalogenated), and of the initial amounts of fluorinated comonomers. The different mol % contents of comonomers in the co‐ and terpolymers were assessed by 19F NMR spectroscopy. A wide range of co‐ and terpolymers containing mol % of PFSVE functional monomer ranging from 10 to 70% was produced. The kinetics of copolymerization of VDF with PFSVE enabled to assess the reactivity ratios of both comonomers: rVDF = 0.57 ± 0.15 and rPFSVE = 0.07 ± 0.04 at 120 °C. The thermal and physicochemical properties were also studied. Moreover, the glass transition temperatures (Tgs) of poly(VDF‐co‐PFSVE) copolymers containing different amounts of VDF and PFSVE were determined and the theoretical Tg of poly(PFSVE) homopolymer was deduced. Then, the hydrolysis of the ? SO2F into ? SO3H function was investigated and enabled the synthesis of fluorinated copolymers bearing sulfonic acid functions. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1814–1834, 2007 相似文献
16.
Zhiqiang Tao 《European Polymer Journal》2007,43(2):550-560
A novel fluorinated epoxy resin, 1,1-bis(4-glycidylesterphenyl)-1-(3′-trifluoromethylphenyl)-2,2,2-trifluoroethane (BGTF), was synthesized through a four-step procedure, which was then cured with hexahydro-4-methylphthalic anhydride (HMPA) and 4,4′-diaminodiphenyl-methane (DDM). As comparison, a commercial available epoxy resin, bisphenol A diglycidyl ether (BADGE), cured with the same curing agents was also investigated. We found that the BGTF gave the exothermic starting temperature lower than BADGE no mater what kind of curing agents applied, implying the reactivity of the former is higher than the latter. The fully cured fluorinated BGTF epoxy resins have good thermal stability with glass transition temperature of 170-175 °C and thermal decomposition temperature at 5% weight loss of 370-382 °C in nitrogen. The fluorinated BGTF epoxy resins also showed the mechanical properties as good as the commercial BADGE epoxy resins. The cured BGTF epoxy resins exhibited improved dielectric properties as compared with the BADGE epoxy resins with the dielectric constants and the dissipation factors lower than 3.3 and dissipation 2.8 × 10−3, respectively, which is related to the low polarizability of the C-F bond and the large free volume of CF3 groups in the polymer. The BGTF epoxy resins also gave low water absorption because of the existence of hydrophobic fluorine atom. 相似文献
17.
We report the preparation and enhanced thermal and mechanical properties of poly (vinylidine diflouride) (PVDF) nanocomposites reinforced by few-layer graphene flakes which are produced by the direct liquid-phase exfoliation of pristine graphite. Graphene flakes are found to homogeneously disperse in PVDF, reduce the bubble defects and thus the porosity of PVDF, and change PVDF’s crystallinity. Thermogravimetric analysis indicates that graphene can accelerate the fracture of hydrogen bond connecting PVDF and N-Methyl pyrrolidone molecules. 1.5?wt% graphene loading leads to around 20?°C enhancement in the melting temperature of PVDF. The mechanical properties like Young’s modulus (EIT), yield stress (σy), and hardness (H) of the nanocomposites are investigated by nanoindentation technique. A 1.0?wt% loading of graphene is found to increase EIT, σy, and H of PVDF by ~337%, ~102%, and ~228%, respectively.
- Highlights
Few-layer graphene was produced by liquid-phase exfoliation.
Graphene were added to PVDF to enhance thermal and mechanical properties of polymer.
Mechanical properties of PVDF/graphene composite films were investigated by nanoindentation.
18.
Blends of poly(vinylidene fluoride) (PVDF) and silicone rubber (SR) were prepared through dynamic vulcanization. The effects of SR content on crystallization behavior, rheology, dynamic mechanical properties and morphology of the blends were investigated. Morphology characterization shows that the crosslinked spherical SR particles with an average diameter of 2-4 μm form a “network” in the PVDF continuous phase. The dynamic mechanical properties indicate the interface adhesion between PVDF and rubber phase is improved by the dynamic vulcanization. The rheology study shows that with the increase of rubber content the blends pseudoplastic nature is retained, while the viscosity increases, and hence the processability is less good. The incorporation of SR phase promotes the nucleation process of PVDF, leading to increased polymer crystallization rate and crystallization temperature. However, a higher content of SR seems to show a negative effect on the crystallinity of the PVDF component. 相似文献
19.
Poly(vinylidene fluoride) (PVDF)-multiwalled carbon nanotube (MWNT) composites with different aspect ratios of MWNT were prepared by a coagulation method. Field emission scanning electron and transmission electron microscopic studies reveal that MWNT are well dispersed in the PVDF matrix. The X-ray diffraction and differential scanning calorimeter data indicate that the composites with high aspect ratio of MWNT have the β phase structure at the MWNT loading level of 2.0wt%, and have a mixture of α and β phase below 2wt% MWNT, and that those composites with low aspect ratio of MWNT, however, always have a mixture of α and β phase for MWNT concentrations ?2.0wt%. The dielectric constant values increase with the increase in MWNT loading level and the percent increase in dielectric constant is much greater in the composite filled with high aspect ratio of MWNT than in that loaded with low aspect ratio. And also, it has been found that the dielectric loss of the composites with MWNT loading level ?2.0wt% is still as low as neat PVDF, which is of significance for dielectric application. 相似文献
20.
Qiong Gao Jerry I. Scheinbeim Brian A. Newman 《Journal of Polymer Science.Polymer Physics》1999,37(22):3217-3225
Both poly(vinylidene fluoride) (PVF2) and nylon 11 are ferroelectric polymers, and have been extensively studied over the past two decades. Blend films were made from mixed powders of these two polymers, which were then melt pressed and cold drawn. The ferroelectric properties of these blend films were investigated. The remnant polarization, Pr, was found to vary with composition, and to be 60% larger than that of either component at a 50/50 (by weight) composition where Pr exhibited a maximum of about 90 mC/m2. The magnitude of the coercive field, Ec, also exhibited a maximum at this composition. Both Pr and Ec are also observed to change significantly with the draw ratio. The results are discussed based on a two-phase dielectric composite model. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 3217–3225, 1999 相似文献