首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
炸药爆炸冲击波合成纤锌矿型氮化硼   总被引:3,自引:0,他引:3       下载免费PDF全文
 本文报道了用国产石墨型氮化硼(gBN)为原料在炸药爆炸产生的冲击波作用下合成纤锌矿型氮化硼(wBN)的技术。对冲击波作用后的回收产物进行化学分离,得到杂质含量低于0.5%的wBN产品;回收产物的wBN的转化率高于50%;单发试验产量达11~12 g。目前已利用这一技术生产出少量wBN产品。在相同的冲击波条件下,对四种不同来源的gBN进行了合成试验。发现wBN的转化率强烈地依赖于原始gBN的结晶特性。比表面积测量及X射线衍射观察表明,冲击波合成的wBN是一种多晶微粉,平均颗粒度约0.1 μm,平均晶粒度约17.5 nm。差热分析显示放热反应起始温度为1 055 K,峰顶温度1 238 K。  相似文献   

2.
 用hBN(Ⅰ、Ⅱ型层状结构的六角氮化硼)作原料,在斜冲击波的高温高压作用下,实现了hBN向wBN(纤锌矿型氮化硼)的转变。X光结构分析表明,生成的超硬氮化硼全部为wBN,没有发现zBN(闪锌矿型氮化硼)生成的任何证据。X光荧光光谱分析结果,得到的wBN的纯度接近99%。差热分析显示,在空气中温度为1 127 K时,开始吸热反应,吸热峰位于1 260 K。这表明wBN的热稳定性介于zBN和金刚石之间。  相似文献   

3.
 用X射线衍射法,对不同结晶度的石墨型氮化硼(gBN)在冲击波作用下转变成的纤锌矿型氮化硼(wBN)产物进行了研究,对wBN中的杂质含量等进行了分析。结果表明:gBN的石墨化指数G.I值对wBN的产率有明显的影响。  相似文献   

4.
 描述了一种联合使用锰铜计和康铜计间接测量柱对称滑移爆轰条件下,金属管内样品中冲击波压力的方法。给出了冲击压缩方法合成纤锌矿型氮化硼(wBN)时的测量结果。结果表明:管内样品中压力范围大致在11.5~22 GPa范围内,满足冲击波合成wBN所需的压力条件;管内样品压力的发展变化具有不连续性。证明了这种间接测量管内压力的方法是可行的。  相似文献   

5.
 使用两种不同的高压在位X光衍射法,研究了用爆炸法合成的纤锌矿型氮化硼(wBN)在室温下的等温状态方程。一种方法是用转靶X光角色散粉末衍射法,研究了它在0~40 GPa压力范围内的等温压缩行为。结果表明,wBN在0~40 GPa的压力范围内是稳定的,没有发生结构相变。通过p-V数据对Murnaghan方程拟合,得到wBN在p=0时的等温体模量B0=(335±34) GPa及其对压力的一阶导数B0'=4.21;另一种是用同步辐射X光能量色散衍射法,研究了它在0~25 GPa压力范围内的等温状态方程。实验中,使用了改进的自动加压的DAC高压装置,此装置保证了实验中衍射角θ0固定不变。将获得的p-V数据仍用Murnaghan方程拟合,得到wBN在p=0时等温体模量B0=(280±56) GPa,及其B0'=4.39。  相似文献   

6.
 用高分辨率(0.2 nm)电子显微镜,对hBN-触媒体系经高温高压处理后的产物观察中,看到尺寸约为30 nm的微小颗粒,经电子衍射方法判定其具有纤锌矿结构,为wBN的雏形晶粒。  相似文献   

7.
氮化硼固相转变的船形模型   总被引:1,自引:1,他引:0       下载免费PDF全文
 船形转变模型是有rBN结构向wBN结构的固相转变模型。在静高压下,相比于以椅形方式,rBN更容易以船形方式转变。  相似文献   

8.
以钢渣微粉作为研究对象,采用磷酸溶液改性钢渣微粉制备弱酸改性钢渣微粉,利用X射线衍射仪、比表面积及孔径测定仪和环境扫描电镜对弱酸改性钢渣微粉进行表征,研究弱酸改性钢渣微粉的组成成分、孔结构、微观结构和元素组成。结果表明,适量磷酸溶液可以有效去除钢渣微粉中f-CaO,提高弱酸改性钢渣微粉的孔结构。过量磷酸溶液与钢渣微粉中Ca(OH)2发生反应,导致弱酸改性钢渣微粉结构坍塌,整体呈现蓬松状。80 g钢渣微粉,1.6~3.2 mL磷酸溶液时,弱酸改性钢渣微粉具有较低的f-CaO含量与良好的孔结构。为进一步拓展钢渣的利用途径提供一定的技术支持和理论基础。  相似文献   

9.
化学机械抛光法是制作超光滑单晶硅镜片的常用工艺,抛光过程中的各类杂质粒子经常会导致加工表面产生划痕,降低镜片的表面质量。为系统研究不同晶向单晶硅表面塑性划痕与抛光液中杂质的关系,设计了金刚石微粉掺杂抛光Si(111)、Si(110)和Si(100)晶面的实验。利用轮廓仪测量了不同晶向、不同掺杂浓度下的划痕形貌,并通过计算载荷归一化后的划痕宽度分布、划痕深度分布、粗糙度和二维功率谱密度来评估划痕形貌。结果显示,抛光液中杂质粒子粒径、硅片表面的划痕宽度均服从正态分布。随着杂质粒子浓度的增加,划痕形貌从非周期性特征转变为周期性波动,粗糙度出现突跃点。此外,在同浓度金刚石微粉掺杂情况下,Si(110)面在划痕产生初期有更好的杂质粒子容忍度。  相似文献   

10.
钢渣是冶金工业中产生的主要固体废弃物,其产量约为每年粗钢产量的15%~20%。由于技术的局限,导致我国钢渣利用率较低,仅为年钢渣产量的10%,同时加之管理制度的不健全,导致钢渣大量露天堆放,对土地资源、地下水源,以及空气质量形成严重影响。面对上述问题,利用钢渣开发一种价格低廉的固化药剂用于重金属污染土壤的修复,既是冶金固体废弃物可持续发展的重要途径之一,也是大幅降低重金属污染土壤修复成本的重要途径之一。该研究创新性是用风淬渣微粉作为固化药剂对含有Cd,Cu,Pb,Ni和Zn的重金属污染土壤进行修复。研究了风淬渣粉磨时间、风淬渣微粉掺量和养护时间对修复重金属污染土壤效果的影响。利用激光粒度分析仪测试风淬渣微粉的粒度分布、比表面积与孔隙度吸附仪测试风淬渣微粉的孔结构、扫描电子显微镜测试风淬渣微粉-重金属污染土壤混合物的微观形貌、X-射线衍射仪测试风淬渣微粉的矿物成分,分析风淬渣微粉修复重金属污染土壤的机理。结果表明,风淬渣的性质安全,对生态环境不存在污染,可以用于修复重金属污染土壤的固化技术。当风淬渣粉磨时间为100 min、风淬渣微粉掺量为20%、养护时间为14 d时,风淬渣微粉对重金属污染土壤中Cu,Cd,Ni,Zn和Pb的固化效果均达到91%以上。随着风淬渣粉磨时间的延长,风淬渣微粉的粒径尺寸减小、粒度分布趋向均匀。风淬渣的多孔结构破坏、比表面积提高,有利于提高风淬渣微粉对重金属污染土壤的修复效果。随着风淬渣微粉掺量的增加,风淬渣微粉形成的水化凝胶(C-S-H)数量增加,有利于提高风淬渣微粉包裹重金属污染土壤的效果,以达到固化重金属污染土壤中Cd,Cu,Pb,Ni和Zn的目的。风淬渣微粉对固化重金属污染土壤中Cu,Cd,Ni,Zn和Pb具有选择性,在不同养护时间下,重金属分别以Cd2SiO4,Cu(OH)2·2H2O,PbCO3,3Ni(OH)2·2H2O,Ni2SiO4,Zn(OH)2和Zn2SiO4形式存在。  相似文献   

11.
利用平面冲击波技术,对溶胶-凝胶法制备的锐钛矿型TiO2粉体和干凝胶进行冲击实验,采用X射线衍射(XRD)、透射电镜(SEM)和激光粒度分析仪(LPSA)等手段对冲击前后的TiO2粉体和干凝胶进行表征。结果表明:冲击波的高温作用能够实现亚稳态的锐钛矿型TiO2向稳定态的金红石型TiO2转变,并且冲击波直接作用于干凝胶时更容易获得稳定态的金红石型TiO2;冲击波的瞬时性可以抑制TiO2晶粒的长大,实现晶粒纳米化;冲击波的高压作用可以有效控制由于溶胶-凝胶法导致的粉体团聚现象。  相似文献   

12.
用冲击波合成法制备羟基磷灰石粉体   总被引:11,自引:2,他引:9       下载免费PDF全文
 羟基磷灰石(HA)已广泛用作人体硬组织的修复和替换材料,采用冲击波处理CaCO3与CaHPO4·2H2O的混合物合成了HA粉末,并用XRD、SEM和FTIR对制得的粉末进行了表征。研究结果表明:与传统的高温焙烧法相比,冲击波法合成的HA粉末不仅有类似的晶相结构及成分,而且含有少量CO32-离子,为类人骨的羟基磷灰石;其粒度更细、分布更均匀、内部存在大量的晶格畸变,有更高的活性。冲击波处理是合成HA粉末的一种新方法。  相似文献   

13.
Abstract

An abnormally low wBN thermal stability, caused by the imperfection of the structure, has been observed for the material produced under high static pressures from pyrolytic rBN. Endothermic wBN→rBN transformation occurs in 490–710 K range by the inverse crystallographic mechanism.  相似文献   

14.
High pressure pyrolysis of melamine has been attracting great interest recently, due to it being considered as a suitable precursor to realize the g-C3N4 and even superhard C3N4. In this work, we studied the detailed pyrolysis behavior of melamine at 22 GPa. Melamine was stable at 800 ℃, and decomposed to diamond in the form of powder at 1500-2000 ℃ under this pressure condition. At 2000 ℃, the pure cubic diamond powders with 0.1-0.5 μm grain size were obtained. The diamond particles exhibited euhedral forms and dispersed to each other, we proposed that these novel features were caused by the presence of liquid N2 and NH3 during diamond formation. The high pressure pyrolysis of melamine may provide a new means of producing micrometer-sized diamond powders.  相似文献   

15.
Nitrogen is successfully doped in diamond by adding sodium azide (NaN3 ) as the source of nitrogen to the graphite and iron powders. The diamond crystals with high nitrogen concentration, 1000-2200ppm, which contain the same concentrations of nitrogen with natural diamond, have been synthesized by using the system of iron-carbon- additive NAN3. The nitrogen concentrations in diamond increase with the increasing content of NAN3. When the content of NaN3 is increased to 0.7-1.3 wt. %, the nitrogen concentration in the diamond almost remains in a nitrogen concentration range from 1250ppm to 2200ppm, which is the highest value and several times higher than that in the diamond synthesized by a conventional method without additive NaN3 under high pressure and high temperature (HPHT) conditions.  相似文献   

16.
纳米铁酸锌的冲击波合成及它的光催化活性   总被引:9,自引:1,他引:8       下载免费PDF全文
 利用溶液共沉淀法制备了纳米氧化锌和三氧化二铁的非常均匀的混合物。通过常规的高温焙烧法和冲击波压缩方法分别合成了铁酸锌。这两种铁酸锌对硫化氢气体的光催化脱氢表现出显著不同的催化活性。试验表明:高温焙烧法合成的铁酸锌是一种颗粒度为几十纳米的结晶完整的化合物;而冲击波合成的铁酸锌是一种颗粒度为几个纳米的非化学计量比化合物,它的光催化活性随着冲击波合成压力的增高而迅速提高。在37 GPa时,冲击波合成的铁酸锌对H2S脱氢的光催化活性要比高温焙烧法制备的铁酸锌高出3倍以上。利用粉末X光衍射,透射电镜及电子衍射,Mossbauer谱等分析手段对这两种铁酸锌的晶格结构、细观特征及磁特性进行了表征。  相似文献   

17.
 研究了炸药爆轰合成的纳米金刚石粉在高温(约1 600 K)、高压(5.2 GPa)条件下的行为。将纳米金刚石粉与粉末合金(Ni70Mn25Co5、100#)混合、压制成圆片,与合金片 (Ni70Mn25Co5)和人造石墨片一起交替放入高温高压合成腔体内,进行高温高压实验。实验结果表明:在高温高压条件下,纳米金刚石粉不能长大,反而石墨化了;在相同的高压和保温时间条件下,随着温度的降低,纳米金刚石粉的石墨化程度减弱,纳米金刚石粉的纳米颗粒长大,可长成0.1 mm尺寸的金刚石颗粒(温度为1 070 K左右)。而在此条件下,人造石墨不能合成金刚石,一般金刚石晶体要变成石墨相。这进一步表明,纳米金刚石颗粒表面的活性使得它可以在较低的温度下长成较大颗粒的金刚石。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号