首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The reaction of copper(I) iodide with 1, 3-imidazolidine-2-thione (SC3H6N2) in a 1:2 molar ratio (M/L) has formed unusual 1D polymers, {Cu6(mu3-SC3H6N2)4(mu-SC3H6N2)2(mu-I)2I4}n (1) and {Cu6(mu3-SC3H6N2)2(mu-SC3H6N2)4(mu-I)4I2}n (1a). A similar reaction with copper(I) bromide has formed a polymer {Cu6(mu3-SC3H6N2)2(mu-SC3H6N2)4(mu-Br)4Br2}n (3a), similar to 1a, along with a dimer, {Cu2(mu-SC3H6N2)2(eta1-SC3H6N2)2Br2} (3). Copper(I) chloride behaved differently, and only an unsymmetrical dimer, {Cu2(mu-SC3H6N2)(eta1-SC3H6N2)3Cl2} (4), was formed. Finally, reactions of copper(I) thiocyanate in 1:1 or 1:2 molar ratios yielded a 3D polymer, {Cu2(mu-SC3H6N2)2(mu-SCN)2}n (2). Crystal data: 1, C9H18Cu3I3N6S3, triclinic, P, a = 9.6646(11) A, b = 10.5520(13) A, c = 12.6177(15) A, alpha = 107.239(2) degrees , beta = 99.844(2) degrees , gamma = 113.682(2) degrees , V = 1061.8(2) A(3), Z = 2, R = 0.0333; 2, C(4)H(6)CuN(3)S(2), monoclinic, P2(1)/c, a = 7.864(3) A, b = 14.328(6) A, c = 6.737(2) A, beta = 100.07(3) degrees , V = 747.4(5), Z = 4, R = 0.0363; 3, C12H24Br2Cu2N8S4, monoclinic, C2/c, a = 19.420(7) A, b = 7.686(3) A, c = 16.706(6) A, beta = 115.844(6) degrees , V = 2244.1(14) A(3), Z = 4, R = 0.0228; 4, C12H24Cl2Cu2N8S4, monoclinic, P2(1)/c, a = 7.4500(6) A, b = 18.4965(15) A, c = 16.2131(14) A, beta = 95.036(2) degrees , V = 2225.5(3) A(3), Z = 4, R = 0.0392. The 3D polymer 2 exhibits 20-membered metallacyclic rings in its structure, while synthesis of linear polymers, 1 and 1a, represents an unusual example of I (1a)-S (1) bond isomerism.  相似文献   

2.
Reaction of 1,3-dicyanotetrafluorobenzene with 2 equiv of (trimethylsilyl)iminophosphoranes gave the disubstituted derivatives 4,6-(CN)(2)C(6)F(2)-1,3-AB: 1, A = B = (N=PPh(3)); 2, A = B = (N=PPh(2)Me); and 3, A = (N=PPh(3)), B = (N=PPh(2)Me). Monosubstituted compounds of the type 2,4-(CN)(2)C(6)F(3)-1-A; notably 4, A = (N=PPh(3)), and 5, A = (N=PPh(2)Me), were readily obtained by reaction of 1 molar equiv of the silylated iminophosphorane with the cyanofluoro aromatic. Substitution of the fluorine para to the CN group(s) occurs in all cases. Reactions of 1,2- and 1,4-dicyanotetrafluorobenzene with (trimethylsilyl)iminophosphoranes gave only monosubstituted derivatives 3,4-(CN)(2)C(6)F(3)-1-A (6, A = (N=PPh(3)), and 7, A = (N=PPh(2)Me)) and 2,5-(CN)(2)C(6)F(3)-1-A (8, A = (N=PPh(3)), and 9, A = (N=PPh(2)Me)), respectively, as the result of electronic deactivation of the second substitutional point. 1, 4,6-(CN)(2)C(6)F(2)-1,3-(N=PPh(3)), 2, 4,6-(CN)(2)C(6)F(2)-1,3-(N=PPh(2)Me)(2), and 3, 4,6-(CN)(2)C(6)F(2)-1-(N=PPh(3))-3-(N=PPh(2)Me) have been structurally characterized. For 1 (at 21 degrees C), monoclinic, C2/(c) (No. 15), a = 15.289(2) ?, b = 10.196(1) ?, c = 23.491(6) ?, beta = 91.63(2) degrees, V = 3660(2) ?(3), and Z = 4. The P=N bond length is 1.579(2) ? and the P(V)-N-C(phenyl) angle is 134.0(2) degrees. For 2, (at 21 degrees C) monoclinic, C2/(c) (No. 15), a = 18.694(2) ?, b = 8.576(1) ?, c = 40.084(4) ?, beta = 94.00(1) degrees, V = 6411(2) ?(3), and Z = 8. The P(1)=N(1) bond length is 1.570(4) ?, the P(2)=N(2) bond length is 1.589(3) ?, the P(1)-N(1)-C(14) angle is 131.6(3) degrees, and the P(2)-N(2)-C(16) angle is 131.3(3) degrees. For 3, (at -80 degrees C) monoclinic, P2(1)/c (No. 14), a = 9.210(1) ?, b = 18.113(2) ?, c = 20.015(2) ?, beta = 100.07(1) degrees, V = 3287(2) ?(3), and Z = 4. The P(1)=N(1) bond length (PPh(3) group) is 1.567(4) ?, the P(2)=N(2) bond length (PPh(2)Me group) is 1.581(5) ?, the P(1)-N(1)-C(1) angle is 140.4(4) degrees, and the P(2)-N(2)-C(3) angle is 129.4(4) degrees. These new multifunctional chelating ligands readily react with [Rh(cod)Cl](2) and AgClO(4) to give cationic Rh(I) complexes in which the imine and/or the nitrile groups are coordinated to the Rh center.  相似文献   

3.
The room-temperature syntheses and single-crystal structures of C(4)N(2)H(12).NH(4)Cl(3).H(2)O and C(6)N(2)H(14).NH(4)Cl(3) are reported. These novel molecular perovskites contain vertex-sharing octahedral (NH(4))Cl(6) arrays which replicate the octahedral packing in the cubic (SrTiO(3)) and 2-H hexagonal (BaNiO(3)) perovskite structures, respectively. The structures are completed by doubly protonated organic cations and, for the cubic phase, water molecules. Crystal data: C(4)N(2)H(12).NH(4)Cl(3).H(2)O, M(r) = 230.56, orthorhombic, Pbcm (No. 57), a = 6.5279(13) A, b = 12.935(3) A, c = 12.849(3) A, V = 1085.0(4) A(3), Z = 4; C(6)N(2)H(14).NH(4)Cl(3), M(r) = 238.59, trigonal, Pthremacr;c1 (No. 165), a = 16.1616(2) A, c = 22.3496(4) A, V = 5055.5(2) A(3), Z = 18.  相似文献   

4.
1 INTRODUCTIONThe molecular structures of five-coordinated copper (II) complexes show an extensive variability ranging from trigonal bipyramidal to square pyramidal stereochemistry, with most complexes displaying a structure which is intermediate between these two extremes[1,2]. Most crystal structures of 1,10-phenanthroline with copper (II) complexes are known, [Cu (phen)2X]Y, where X = Cl, Br, I, CN, NCS, H2O or thiourea and Y = perchlorate, nitrate, tetrafluoroborate, chloride o…  相似文献   

5.
1INTRODUCTION Investigation of the coordination chemistry of copper(II)continues to be stimulated by interest in developing modes for copper proteins and in under-standing the factors which give rise to the seemingly infinite variety of distortions from regular stereo-chemistry observed in Cu(II)complexes[1,2].For more than decades,due to the unique coordination polyhedra and their easy preparation,tripodal copper complexes have attracted much attention in addition to their special chemi…  相似文献   

6.
Wozniak M  Nowogrocki G 《Talanta》1979,26(12):1135-1141
The acids under study differed from one another in length of the carbon chain [N + H(3)(CH(2))(n)PO(3)H(-) for n = 1, 2, 3], substitution on the nitrogen atom [R(1)R(2)N + HCH(2)PO(3)H(-) for R(1) = H; R(2) = Me, Et and R(1) = R(2)= Me, Et] or extent of branching on the carbon atom adjacent to functional groups [N + H(3)CR(3)R(4)PO(3)H(-) for R(3) = H; R(4) = Me, Et, nPr, iPr, nBu and R(3) = R(4) = Me]. Acidity constants and overall stability constants of complexes formed with Ca(II), Mg(II), Co(II), Ni(II), Cu(II), Zn(II) were obtained with the multiparametric refinement programs MUPROT and MUCOMP, applied to potentiometric data, obtained at 25 degrees , in a 0.1M potassium nitrate medium. In the most general case, the existing species are MHA(+), MA, M(OH)A(-), MH(2)A(2), MHA(-)(2) and MA(2-)(2), where A(2-) stands for the fully ionized ligand; preliminary examination of results points out some predominant microscopic forms.  相似文献   

7.
1 INTRODUCTION Supramolecular chemistry is based on the notion of creating novel structural and functional extended systems using noncovalent interactions between prefabricated molecular or ionic building blocks[1]. More recently, the design of supramolecular architec- tures by self-assembly of small building blocks has become a major research area[2, 3] due to their poten- tial applications in many fields such as selective clathration[4, 5], molecular recognition[6, 7], catalysis[8, 9] a…  相似文献   

8.
Three new strontium vanadium borophosphate compounds, (NH4)2(C2H10N2)6[Sr(H2O)5]2[V2P2BO12]6 10H2O (Sr-VBPO1) (1), (NH4)2(C3H12N2)6[Sr(H2O)4]2[V2P2BO12]6 17H2O (Sr-VBPO2) (2), and (NH4)3(C4H14N2)4.5[Sr(H2O)5]2[Sr(H2O)4][V2P2BO12]6 10H2O (Sr-VBPO3) (3) have been synthesized by interdiffusion methods in the presence of diprotonated ethylenediamine, 1,3-diaminopropane, and 1,4-diaminobutane. Compound 1 has a chain structure, whereas 2 and 3 have layered structures with different arrangements of [(NH4) [symbol: see text] [V2P2BO12]6] cluster anions within the layers. Crystal data: (NH4)2(C2H10N2)6[Sr(H2O)5]2[V2P2BO12]6 10H2O, monoclinic, space group C2/c (no. 15), a = 21.552(1) A, b = 27.694(2) A, c = 20.552(1) A, beta = 113.650(1) degrees, Z = 4; (NH4)2(C3H12N2)6[Sr(H2O)4]2[V2P2BO12]6 17H2O, monoclinic, space group I2/m (no. 12), a = 15.7618(9) A, b = 16.4821(9) A, c = 21.112(1) A, beta = 107.473(1) degrees, Z = 2; (NH4)3(C4H14N2)4.5[Sr(H2O)5]2[Sr(H2O)4] [V2P2BO12]6 10H2O, monoclinic, space group C2/c (no. 15), a = 39.364(2) A, b = 14.0924(7) A, c = 25.342(1) A, beta = 121.259(1) degrees, Z = 4. The differences in the three structures arise from the different steric requirements of the amines that lead to different amine-cluster hydrogen bonds.  相似文献   

9.
Depending on experimental conditions and the nature of the hydrazine, the reactions of ReCl3P3 [P = PPh(OEt)2] with RNHNH2 (R = H, CH3, tBu) afford the bis(dinitrogen) [Re(N2)2P4]+ (2+), dinitrogen ReClN2P4 (3), and methyldiazenido [ReCl(CH3N2)(CH3NHNH2)P3]+ (1+) derivatives. In contrast, reactions of ReCl3P3 [P = PPh(OEt)2, PPh2OEt] with arylhydrazines ArNHNH2 (Ar = Ph, p-tolyl) give the aryldiazenido cations [ReCl(ArN2)(ArNHNH2)P3]+ (4+) and [ReCl(ArN2)P4]+ (7+) and the bis(aryldiazenido) cations [Re(ArN2)2P3]+ (5+, 6+). These complexes were characterized spectroscopically (IR; 1H and 31P NMR), and the BPh4 complexes 1, 2, and 7 were characterized crystallographically. The methyldiazenido derivative [ReCl(CH3N2)(CH3NHNH2)(PPh(OEt)2)3][BPh4] (1) crystallizes in space group P1 with a = 15.396(5) A, b = 16.986(5) A, c = 11.560(5) A, alpha = 93.96(5) degrees, beta = 93.99(5) degrees, gamma = 93.09(5) degrees, and Z = 2 and contains a singly bent CH3N2, group bonded to an octahedral central metal. One methylhydrazine ligand, one Cl- trans to the CH3N2, and three PPh(OEt)2 ligands complete the coordination. The complex [Re(N2)2(PPh(OEt)2)4][BPh4] (2) crystallizes in space group Pbaa with a = 23.008(5) A, b = 23.367(5) A, c = 12.863(3) A, and Z = 4. The structure displays octahedral coordination with two end-on N2 ligands in mutually trans positions. [ReCl(PhN2)(PPh(OEt)2)4][BPh4] (7) crystallizes in space group P2(1)/n with a = 19.613(5) A, b = 20.101(5) A, c = 19.918(5) A, beta = 115.12(2) degrees, and Z = 4. The structure shows a singly bent phenyldiazenido group trans to the Cl- ligand in an octahedral environment. The dinitrogen complex ReClN2P4 (3) reacts with CF3SO3CH3 to give the unstable methyldiazenido derivative [ReCl(CH3N2)P4][BPh4]. Reaction of the methylhydrazine complex [ReCl(CH3N2)(CH3NHNH2)P3][BPh4] (1) with Pb(OAc)4 at -30 degrees C results in selective oxidation of the hydrazine, affording the corresponding methyldiazene derivative [ReCl(CH3N=NH)(CH3N2)P3][BPh4] (8). In contrast, treatment with Pb(OAc)4 of the related arylhydrazines [ReCl(ArN2)(ArNHNH2)P3][BPh4] (4) [P = PPh(OEt)2] gives the bis(aryldiazenido) complexes [Re(ArN2)2P3][BPh4] (5). Possible protonation reactions of Br?nsted acids HX with all diazenides, 1, 4, 5, 6, and 8, were investigated and found to proceed only in the cases of the bis(aryldiazenido) complexes 5 and 6, affording, with HCl, the octahedral [ReCl(ArN=NH)(ArN2)P3][BPh4] or [ReCl(Ar(H)NN)(ArN2)P3][BPh4] (10) (Ar = Ph; P = PPh2OEt) derivative.  相似文献   

10.
The synthesis, structural characterization, spectroscopic, and electrochemical properties of N(2)S(2)-ligated Ni(II) complexes, (N,N'-bis(2-mercaptoethyl)-1,5-diazacyclooctane)nickel(II), (bme-daco)Ni(II), and (N,N'-bis(2-mercapto-2-methylpropane)1,5-diazacyclooctane)nickel(II), (bme-daco)Ni(II), derivatized at S with alcohol-containing alkyl functionalities, are described. Reaction of (bme-daco)Ni(II) with 2-iodoethanol afforded isomers, (N,N'-bis(5-hydroxy-3-thiapentyl)-1,5-diazacyclooctane-O,N,N',S,S')halonickel(II) iodide (halo = chloro or iodo), 1, and (N,N'-bis(5-hydroxy-3-thiapentyl)-1,5-diazacyclooctane-N,N',S,S')nickel(II) iodide, 2, which differ in the utilization of binding sites in a potentially hexadentate N(2)S(2)O(2) ligand. Blue complex 1 contains nickel in an octahedral environment of N(2)S(2)OX donors; X is best modeled as Cl. It crystallizes in the monoclinic space group P2(1)/n with a = 12.580(6) ?, b = 12.291(6) ?, c = 13.090(7) ?, beta = 97.36(4) degrees, and Z = 4. In contrast, red complex 2 binds only the N(2)S(2) donor set forming a square planar nickel complex, leaving both -CH(2)CH(2)OH arms dangling; the iodide ions serve strictly as counterions. 2 crystallizes in the orthorhombic space group Pca2(1) with a = 15.822(2) ?, b = 13.171(2) ?, c = 10.0390(10) ?, and Z = 4. Reaction of (bme-daco)Ni(II) with 1,3-dibromo-2-propanol affords another octahedral Ni species with a N(2)S(2)OBr donor set, ((5-hydroxy-3,7-dithianonadiyl)-1,5-diazacyclooctane-O,N,N',S,S')bromonickel(II) bromide, 3. Complex 3 crystallizes in the orthorhombic space group Pca2(1) with a = 15.202(5) ?, b = 7.735(2) ?, c = 15.443(4) ?, and Z = 4. Complex 4.2CH(3)CN was synthesized from the reaction of (bme-daco)Ni(II) with 1,3-dibromo-2-propanol. It crystallizes in the monoclinic space group P2/c with a = 20.348(5) ?, b = 6.5120(1) ?, c = 20.548(5) ?, and Z = 4.  相似文献   

11.
Two new niobium and zinconiobium fluorophosphates, NbOF(PO4)2(C2H10N2)2 (1) and Zn3(NbOF)(PO4)4-(C2H10N2)2 (2), have been prepared under hydrothermal conditions using ethylenediamine as a template. The structures were determined by single crystal diffraction to be triclinic, space group P1 (No. 2), a = 8.1075 (6) A, b = 9.8961 (7) A, c = 10.1420(8) A, alpha = 111.655(1) degrees, beta = 111.51(1) degrees, gamma = 93.206(1) degrees, V = 686.19(9) A3, and Z = 2 for 1 and orthorhombic, space group Fddd (No. 70), a = 9.1928(2) A, b = 14.2090(10) A, c = 32.2971 (6) A, V = 4218.66(12) A3, and Z = 8 for 2, respectively. Compound 1 is an infinite linear chain consisting of corner-sharing [Nb2P2] 4-MRs bridged at the Nb centers with organic amines situated between chains, and compound 2, containing the chains similar to that in 1, forms a zeotype framework with organic amines situated in the gismondine-type [4684] cavities. The topology of 2 was previously unknown with vertex symbol 4 x 4 x 4 x 4 x 8 x 8 (vertex 1), 4 x 4 x 4 x 82 x 8 x 8 (vertex 2), 4 x 4 x 8 x 8 x 82 x 82 (vertex 3), and 4 x 4 x 4 x 82 x 8 x 8 (vertex 4). The topological relationships between the 4-connected network of 2 and several reported (3,4)-connected networks were discussed.  相似文献   

12.
3-(Pyrrole-2'-carboxamido)propanoic acid I has been synthesized from the reaction of β-alanine methyl ester with 2-trichloroacetylpyrrole followed by saponifying and acidating in 85.4% yield, and the crystal structure of 3-(pyrrole-2'-carboxamido)propanoic acid· (1/2)H2O (C8H11N2O3.5, Mr = 191.19) was obtained and determined by X-ray diffraction method. The crystal is of monoclinic, space group C2/c with a = 19.010(4), b = 8.3515(17), c = 13.788(3) (A), β = 125.88(3)°, V = 1773.6(6) (A)3, Z = 8, Dc = 1.432 g/cm3, λ = 0.71073 (A), μ-MoKα) = 0.114 mm-1 and F(000) = 768. The structure was refined to R = 0.0354 and wR = 0.0942 for 1642 observed reflections with I > 2σ(I). It is revealed that the title compound has one pyrrole ring and one propionic acid subchain linked by an amido bond at C(4), and there are 8 molecules of com- pound I and 4 crystal water molecules in each unit cell. The supramolecular layers are stabilized by the hydrogen bonds of N(2) H…O(2), N(1) H…O(4), O(4) H(1W)…O(2) and O(3) H…O(1).  相似文献   

13.
Three novel metal-organic complexes with formulas [Ni(C9N2O2H7)2(CH3OH)2](1),[Zn(C9N2O2H7)2(H2O)2](2) and [Cd(C9N2O2H7)2(CH3OH)2](3) were synthesized by the reactions of Ni,Zn and Cd salts with ethyl 2-benzimidazolylacetate under hydrothermal conditions or layering technique,and characterized by single-crystal X-ray diffraction analysis,IR spec-troscopy,solid-state luminescent properties and thermogravimetric(TG) analysis.The crystal data for these three complexes are as follows:for 1,monoclinic,space group P21/c,a = 9.384(3),b = 9.634(3),c = 11.292(3) ,β = 95.787(5)°,V = 1015.7(5) 3,Z = 2,F(000) = 492,Dc = 1.547 Kg/m3,μ = 1.002 mm-1,the final R = 0.0451 and wR = 0.0900 for 1833 observed reflections with Ⅰ 2σ(Ⅰ);for 2,orthorhombic,space group Pbca,a = 10.031(4),b = 10.379(4),c = 17.525(7),V = 1824.6(12) 3,Z = 4,F(000) = 928,Dc = 1.645 Kg/m3,μ = 1.392 mm-1,the final R = 0.0452 and wR = 0.0996 for 1661 observed reflections with Ⅰ 2σ(Ⅰ);for 3,monoclinic,space group P21/c,a = 9.9114(13),b =10.4852(15),c = 10.4120(14) ,β = 108.453(5)°,V = 1026.4(2) 3,Z = 2,F(000) = 532,Dc = 1.705 Kg/m3,μ = 1.110 mm-1,the final R = 0.0322 and wR = 0.0805 for 1822 observed reflections with Ⅰ 2σ(Ⅰ).In the three complexes,the ethyl 2-benzimidazolylacetate shows the same chelating mode,and the adjacent units are interlinked into a two-dimensional layer through hydrogen-bonds(O-H···O,N-H···O).  相似文献   

14.
<正> A 1:2 adduct of ZnCl2 with pyridiniopropionate (C5H5N + CH2CH2CO2-,ppBET ) has been prepared and characterized by single-crystal X-ray analysis. The complex crystallizes in the monoclinic space group P21/c(No. 14) with a = 13. 524(2), 6 = 9.322(3), 15. 474(2) A, β=106. 34(2)°, V = 1871. 9(5) A3, Z = 4, Dm = 1. 554gcm-3, Dc=1. 557gcm-3, and μ = 16. 5cm-1. The crystal structure comprises discrete [Zn(ppBET)2Cl2] molecules in which the Zn atom is tetrahe-drally coordinated by two unidentate;carboxylato groups [Zn - O = 1. 965(4) , 1. 969 (4)A] and two chloro ligands [Zn-Cl=2. 269(2),2. 266(1)A].  相似文献   

15.
Vanadium(III) and vanadium(V) complexes derived from the tris(2-thiolatoethyl)amine ligand [(NS3)3-] and the bis(2-thiolatoethyl)ether ligand [(OS2)2-] have been synthesized with the aim of investigating the potential of these vanadium sites to bind dinitrogen and activate its reduction. Evidence is presented for the transient existence of (V(NS3)(N2)V(NS3), and a series of mononuclear complexes containing hydrazine, hydrazide, imide, ammine, organic cyanide, and isocyanide ligands has been prepared and the chemistry of these complexes investigated. [V(NS3)O] (1) reacts with an excess of N2H4 to give, probably via the intermediates (V(NS3)(NNH2) (2a) and (V(NS3)(N2)V(NS3) (3), the V(III) adduct [V(NS3)(N2H4)] (4). If 1 is treated with 0.5 mol of N2H4, 0.5 mol of N2 is evolved and green, insoluble [(V(NS3))n] (5) results. Compound 4 is converted by disproportionation to [V(NS3)(NH3)] (6), but 4 does not act as a catalyst for disproportionation of N2H4 nor does it act as a catalyst for its reduction by Zn/HOC6H3Pri2-2,6. Compound 1 reacts with NR1(2)NR2(2) (R1 = H or SiMe3; R2(2) = Me2, MePh, or HPh) to give the hydrazide complexes [V(NS3)(NNR2(2)] (R2(2) = Me2, 2b; R2(2) = MePh, 2c; R2(2) = HPh, 2d), which are not protonated by anhydrous HBr nor are they reduced by Zn/HOC6H3Pri2-2,6. Compound 2b can also be prepared by reaction of [V(NNMe2)(dipp)3] (dipp = OC6H3Pri2-2,6) with NS3H3. N2H4 is displaced quantitatively from 4 by anions to give the salts [NR3(4)][V(NS3)X] (X = Cl, R3 = Et, 7a; X = Cl, R3 = Ph, 7b; X = Br, R3 = Et, 7c; X = N3, R3 = Bu(n), 7d; X = N3, R3 = Et, 7e; X = CN, R3 = Et, 7f). Compound 6 loses NH3 thermally to give 5, which can also be prepared from [VCl3(THF)3] and NS3H3/LiBun. Displacement of NH3 from 6 by ligands L gives the adducts [V(NS3)(L)] (L = MeCN, nu CN 2264 cm-1, 8a; L = ButNC, nu NC 2173 cm-1, 8b; L = C6H11NC, nu NC 2173 cm-1, 8c). Reaction of 4 with N3SiMe3 gives [V(NS3)(NSiMe3)] (9), which is converted to [V(NS3)(NH)] (10) by hydrolysis and to [V(NS3)(NCPh3)] (11) by reaction with ClCPh3. Compound 10 is converted into 1 by [NMe4]OH and to [V(NS3)NLi(THF)2] (12) by LiNPri in THF. A further range of imido complexes [V(NS3)(NR4)] (R4 = C6H4Y-4 where Y = H (13a), OMe (13b), Me (13c), Cl (13d), Br (13e), NO2 (13f); R4 = C6H4Y-3, where Y = OMe (13g); Cl (13h); R4 = C6H3Y2-3,4, where Y = Me (13i); Cl (13j); R4 = C6H11 (13k)) has been prepared by reaction of 1 with R4NCO. The precursor complex [V(OS2)O(dipp)] (14) [OS2(2-) = O(CH2CH2S)2(2-)] has been prepared from [VO(OPri)3], Hdipp, and OS2H2. It reacts with NH2NMe2 to give [V(OS2)(NNMe2)(dipp)] (15) and with N3SiMe3 to give [V(OS2)(NSiMe3)(dipp)] (16). A second oxide precursor, formulated as [V(OS2)1.5O] (17), has also been obtained, and it reacts with SiMe3NHNMe2 to give [V(OS2)(NNMe2)(OSiMe3)] (18). The X-ray crystal structures of the complexes 2b, 2c, 4, 6, 7a, 8a, 9, 10, 13d, 14, 15, 16, and 18 have been determined, and the 51V NMR and other spectroscopic parameters of the complexes are discussed in terms of electronic effects.  相似文献   

16.
<正> (Ph2Ppy)2(μ-Cl)2Cu2Cl2 (C34H28Cl4Cu2N2P2): Mr=795.5, triclinic, Pl, a=13.891(2), b= 13.196(3), c= 20.158(4) A, d= 90.28(1)°, β=110.05(2)°, r= 90.13(1)°, Z=4, V= 3471.04A3, Dx=1.53 gcm-3, R=0.066, Rw= 0.076 for 5486 observed unique reflections. The complex was prepared by the reaction of (Ph2Ppy)2NiCl2 with CuC≡CPh in CH2Cl2 solution.  相似文献   

17.
Reaction of [Et4N]2[Mo2S2(μ-S)2(edt)2] with CoCl2(6H2O and Phen in MeCN followed by recrystallization in DMSO/Et2O gave rise to dark-red block crystals of {[Co(Phen)3]- [Mo2S2(μ-S)2(edt)2]}2·(DMSO)2·(Et2O) 1 (C88H86Co2Mo4N12O3S18). 1 crystallizes in the monoclinic system, space group P21/c with a = 24.631(4), b = 16.117(3), c = 24.791(4) (A), β = 92.835°, V = 9829.3(3) (A)3, Z = 4, Mr = 2438.57, Dc = 1.648 g/cm3, F(000) = 4928, μ = 12.61 cm-1, R = 0.0936 and wR = 0.1682 for 12998 observed reflections with I > 2.0σ(I). In the structure of 1, the Co atom of the [Co(Phen)3]2+ dication is octahedrally coordinated by three Phen ligands. The Mo atom of the [Mo2S2(μ-S)2(edt)2]2- dianion is coordinated by two μ-S, one terminal S and two S atoms from edt, forming a distorted square pyramidal geometry. The mean Co-N and Mo…Mo bond distances are 2.139 and 2.872 (A), respectively.  相似文献   

18.
Reaction of aminosilanetriol RSi(OH)(3) (1) (R = (2,6-i-Pr(2)C(6)H(3))N(SiMe(3))) with diethyl zinc at room temperature in 1:1 stoichiometric ratio affords [(THF)Zn(O(2)(OH)SiR)](4) (2) (R = (2,6-i-Pr(2)C(6)H(3))N(SiMe(3))) in good yield. The single-crystal X-ray diffraction studies reveal that 2 is monoclinic, P2(1), with a = 17.117(3) A, b = 16.692(5) A, c = 17.399(4) A, alpha = gamma = 90 degrees, beta = 91.45(7) degrees, and Z = 2. The molecular structure of 2 contains two puckered eight-membered Zn(2)Si(2)O(4) rings, which are connected by the Zn-O bonds and form two planar four-membered Zn(2)O(2) rings. Compound 2 contains an unreacted hydroxyl group on each silicon atom, and hence, we carried out the reactions of 2 with dimethylzinc and methyllithium to form [Zn(4)(THF)(4)(MeZn)(4)(O(3)SiR)(4)] (3) (R = (2,6-i-Pr(2)C(6)H(3))N(SiMe(3))) and [(L)ZnLi(O(3)SiR)](4) (4) (L = 1,4-(Me(2)N)(2)C(6)H(4), R = (2,6-i-Pr(2)C(6)H(3))N(SiMe(3))), respectively. This suggested that 2 could be an intermediate product formed during the synthesis of 3 and 4.  相似文献   

19.
C(4)N(3)OH(7).Zn(H(2)O)HPO(4), built up from 4-rings of ZnO(2)(H(2)O)N and HPO(4) tetrahedra, is the first neutral, molecular, zincophosphate cluster. The unit-cell packing involves numerous O-H...O and N-H...O hydrogen bonds and pi...pi stacking interactions. Crystal data: C(4)N(3)OH(7).Zn(H(2)O)HPO(4), M(r) = 292.49, triclinic, P1 (No. 2), a = 9.2956(5) A, b = 11.2077(6) A, c = 19.8319(12) A, alpha = 80.314(1) degrees, beta = 78.829(1) degrees, gamma = 89.241(1) degrees, V = 1997.7(2) A(3), Z = 4.  相似文献   

20.
<正> The crystal and molecular structures of (C12H8N2)Mo(CO)4 and (C12H8N2)Cr(CO)4 are reported. They crystallize in the space group C2/m and are isomorphous with each other. The unit cell dimensions for (C12H8N2 Cr(CO)4 are a=15.404(2), b=12.091(2), c=8.223(2) A, 3=108.70(2)0, and V=1450.6(9) A3, while for (C12H8N2)Mo(CO)4 are a=15.546(6), b=12.086(4), c=8.269(1.) A, β= 107.37(2)0 and V=1482.9(l.5) A3, and both Z=4. Final R=0.040 Rw=0.050 for (C12H8N2)Cr(CO)4 and R=0.034 Rw=0.053 for (C12H8N2)Mo(CO)4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号