共查询到15条相似文献,搜索用时 0 毫秒
1.
<正>A series of new optically active poly(amide-imide)s were synthesized by direct polycondensation reaction of 4,4'-diaminochalcone with several N-trimellitylimido-L-amino acids using a tosyl chloride(TsCl),pyridine(Py) and dimethylformamide(DMF) system as condensing agent.The resulting thermally stable poly(amide-imide)s were obtained in good to high yields and inherent viscosities ranging between 0.35 dL/g and 0.58 dL/g and were characterized with FTIR, ~1H-NMR,CHN,Ultraviolet,TGA and DTG techniques. 相似文献
2.
L-Lysine hydrochloride was transformed to ethyl L-lysine dihydrochloride.This salt was reacted with trimellitic anhydride to yield the corresponding diacid(1).Intertacial polycondensation results novel poly(ester-imide)s(PEIa-i).These polymers have inherent viscosities in the range of 0.23-0.47 dl g-1,display optical activity,and are readily soluble in polar aprotic solvents.They start to decompose(T10%) above 350℃and display glass-transition temperatures at 100.42-172.81℃.All of the above polymers were fully characterized by UV,FT-IR and 1H NMR spectroscopy,elemental analysis,TGA,DSC,inherent viscosity measurement and specific rotation. 相似文献
3.
Khalil Faghihi Khosrow Zamani Azizollah Mirsamie Mohammad Reza Sangi 《European Polymer Journal》2003,39(2):247-254
Rapid and highly efficient synthesis of novel optically active poly(amide-imide)s (PAIs) 6(a-f) was achieved using microwave irradiation. These were made from the polycondensation reactions of 4,4′-carbonyl-bis(phthaloyl-l-alanine) diacid chloride [N,N′-(4,4′-carbonyldiphthaloyl)] bisalanine diacid chloride 5 with six different derivatives of hydantoin and thiohydantoin compounds 4(a-f) in the presence of a small amount of a nonpolar organic medium that acts as a primary microwave absorber. Hydantoin and thiohydantoin derivatives 4(a-e) were synthesis from the reactions between benzil or benzil derivatives 3(a-e) with urea and thiourea. 5,5-Dimethylhydantoin 4f was synthesis from the reactions between acetone cyanohydrin 3f and ammonium carbonate. The polycondensation proceeded rapidly, and was completed within 10 min giving a series of PAIs with an inherent viscosity about 0.25-0.45 dL/g. The resulting PAIs 6(a-f) were obtained in a high yield and were optically active and thermally stable. All of the above compounds were fully characterized by means of Fourier transform infrared spectroscopy, elemental analyses, inherent viscosity (ηinh), solubility tests and specific rotation. Thermal properties of the PAIs 6(a-f) were investigated using thermal gravimetric analysis. 相似文献
4.
N,N′-Pyromelliticdiimido-di-l-methionine (3) was prepared from the reaction of pyromellitic dianhydride (1) with l-methionine (2) in glacial acetic acid and pyridine solution at refluxing temperature. The direct polycondensation reaction of the monomer diimide-diacid (3) with 1,3-phenylenediamine (4a), 1,4-phenylenediamine (4b), 2,6-diaminopyridine (4c), 3,5-diaminopyridine (4d), 4,4′-diaminodiphenylether (4e) and 4,4′-diaminodiphenylsulfone (4f) was carried out in a medium consisting of triphenyl phosphate, N-methyl-2-pyrolidone, pyridine and calcium chloride. The resulting poly(amide-imide)s having inherent viscosities 0.45-0.53 dl g−1 were obtained in high yields and are optically active and thermally stable. All of the above compounds were fully characterized by IR spectroscopy, elemental analyses and specific rotation. Some structural characterization and physical properties of these new optically active poly(amide-imide)s are reported. 相似文献
5.
p‐t‐Butyl calix[4]arene diol (distal cone) (1) was grafted with poly (acrylic acid) (PAA) to obtain hydrophobically modified PAA (PAA‐C) bearing calixarene moieties. The grafting method includes the direct esterification reaction of PAA with calixarene diol 1 which was carried out in a system of tosyl chloride (TsCl), pyridine (Py), and N,N‐dimethylformamide (DMF). The grafting yield was studied using different molar ratios of PAA to calix[4]arene diol 1, temperature, and reaction time. The chemical composition of the PAA‐C was studied by IR and 1H NMR spectroscopy. Also, the morphology of PAA‐C was evaluated by scanning electron microscopy. The PAA‐C had different solubility and thermal properties. The extraction ability measurements of modified PAA toward alkali metal cations (Na+, K+, Cs+) and Ag+ showed a remarkable efficiency and selectivity of PAA‐C toward Na+. The main goal of this work was to design hydrophobically modified PAA with binding ability that is suitable for ion selective membranes and chemical sensor devices such as ion‐specific electrodes, semipermeable membranes, and quartz microbalances. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
6.
A new class of optically active poly(amide-imide)s based on an α-amino acid was synthesized via direct polycondensation reaction of different diisocyanates with a chiral diacid monomer. The step-growth polymerization reactions of N-trimellitylimido-S-valine (TISV) (1) with 4,4′-methylene-bis(4-phenylisocyanate) (MDI) (2) was performed under microwave irradiation, as well as solution polymerization under graduate heating and reflux conditions. The optimized polymerization conditions for each method were performed with tolylene-2,4-diisocyanate (TDI) (3), hexamethylene diisocyanate (HDI) (4), and isophorone diisocyanate (IPDI) (5) to produce optically active poly(amide-imide)s via diisocyanate route. The resulting polymers have inherent viscosities in the range of 0.02-1.10 dL/g. Decomposition temperatures for 5% weight loss (T5) occurred above 300 °C (by TGA) in nitrogen atmospheres. These polymers are optically active, thermally stable and soluble in amide-type solvents. Some structural characterization and physical properties of this new optically active poly(amide-imide)s are reported. 相似文献
7.
A series of novel optically active poly(ester‐imide)s (ter‐PEIs) with high glass transition temperature (Tg), good thermal stability, and solubility were successfully designed and synthesized by direct polycondensation reactions, using p‐hydroxybenzoic acid (PHB), 4,4’‐dihydroxybenzophenone, and a chiral diacid, N,N'‐(pyromellitoyl)‐bis‐L‐phenylalanine diacid as monomers. The resulting terpolymers were characterized by1H‐NMR, FTIR, element analysis, thermogravimetric analysis, different scanning calorimeter and wide‐angle x‐ray diffraction, etc. The ter‐PEIs are amorphous polymers with good heat resistance and high Tgs. They are soluble in many common polar organic solvents and show optically rotation property. The specific rotation values of the ter‐PEIs increase with the molar ratio of the chiral diacid, and the rigid PHB monomer is beneficial to increase the Tgs of the polymers. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
8.
Shadpour E. Mallakpour Abdol-Reza HajipourMohammad Reza Zamanlou 《European Polymer Journal》2002,38(3):475-485
3,3′,4,4′-benzophenonetetracarboxylic dianhydride (4,4′-carbonyldiphthalic anhydride) (1) was reacted with l-phenylalanine (2) in a mixture of acetic acid and pyridine (3:2) and the resulting imide-acid [N,N′-(4,4′-carbonyldiphthaloyl)-bis-l-phenylalanine diacid] (4) was obtained in high yield. The compound (4) was converted to the N,N′-(4,4′-carbonyldiphthaloyl)-bis-l-phenylalanine diacid chloride (5) by reaction with thionyl chloride. A new facile and rapid polycondensation reaction of this diacid chloride (5) with several aromatic diamines such as 4,4′-diaminodiphenyl methane (6a), 2,4-diaminotoluene (6b), 4,4′-sulfonyldianiline (6c), p-phenylenediamine (6d), 4,4′-diaminodiphenylether (6e), m-phenylenediamine (6f), benzidine (6g) and 2,6-diaminopyridine (6h) was developed by using a domestic microwave oven in the presence of a small amount of a polar organic medium such as o-cresol. The polymerization reactions proceeded rapidly, compared with the conventional solution polycondensation, and was completed within 7 min, producing a series of optically active poly(amide-imide)s with high yield and inherent viscosity of 0.22-0.52 dl/g. All of the above polymers were fully characterized by IR, elemental analyses and specific rotation. Some structural characterization and physical properties of this optically active poly(amide-imide)s are reported. 相似文献
9.
Pyromellitic dianhydride (benzene-1,2,4,5-tetracarboxylic dianhydride) (1) was reacted with l-leucine (2) in a mixture of acetic acid and pyridine (3:2) and the resulting imide-acid [N,N′-(pyromellitoyl)-bis-l-leucine diacid] (4) was obtained in quantitative yield. The compound (4) was converted to the N,N′-(pyromellitoyl)-bis-l-leucine diacid chloride (5) by reaction with thionyl chloride. A new facile and rapid polycondensation reaction of this diacid chloride (5) with several aromatic diols such as phenol phthalein (6a), bisphenol-A (6b), 4,4′-hydroquinone (6c), 1,8-dihydroxyanthraquinone (6d), 1,5-dihydroxy naphthalene (6e), 4,4-dihydroxy biphenyl (6f), and 2,4-dihydroxyacetophenone (6g) was developed by using a domestic microwave oven in the presence of a small amount of a polar organic medium such as o-cresol. The polymerization reactions proceeded rapidly and are completed within 10 min, producing a series of optically active poly(ester-imide)s (PEIs) with good yield and moderate inherent viscosity of 0.10-0.27 dl/g. All of the above polymers were fully characterized by IR, elemental analyses and specific rotation. Some structural characterization and physical properties of these optically active PEIs are reported. 相似文献
10.
Hossein Behniafar Batool Akhlaghinia Sedigheh Habibian 《European Polymer Journal》2005,41(5):1071-1078
A new dicarboxylic acid chloride (2) bearing three preformed imide rings was synthesized by treating N-(3,5-diaminophenyl)phthalimide with trimellitic anhydride followed by refluxing with thionyl chloride. A novel family of aromatic poly(ester-imide)s with inherent viscosities of 0.27-0.35 dl g−1 were prepared from 2 with various bisphenols such as resorcinol (3a), hydroquinone (3b), 2,2′-dihydroxybiphenyl (3c), 4,4′-dihydroxybiphenyl (3d), bisphenol-A (3e), 2,2′-dimethyl-4,4′-dihydroxybiphenyl (3f), 1,5-dihydroxynaphthalene (3g), 2,7-dihydroxynaphthalene (3h), and 2,2′-dihydroxy-1,1′-binaphthyl (3i) by high-temperature solution polycondensation in nitrobenzene using pyridine as hydrogen chloride quencher. All of the resulted polymers were fully characterized by FT-IR and NMR spectroscopy and elemental analyses. The poly(ester-imide)s exhibited excellent solubility in some polar organic solvents. From differential scanning calorimetry, the polymers showed glass-transition temperatures between 259 and 353 °C. Thermal behaviors of the obtained polymers were characterized by thermogravimetric analysis and the 10% weight loss temperatures of the poly(ester-imide)s were found to be in the range between 451 and 482 °C in nitrogen. Furthermore, crystallinity of the polymers was estimated by means of wide-angle X-ray diffraction. 相似文献
11.
Haiyan Li 《European Polymer Journal》2006,42(3):534-543
A novel thermally stable unsaturated poly(ester-imide) (UPEI-50) was prepared by thermal polycondensation of a diimidodicarboxylic acid monomer, 1,4-bis[2′-trifluoromethyl-4′-(4″-carboxylic acid)trimellitimido phenoxy]benzene (BTTB), maleic anhydride and 1,2-propylene glycol. The poly(ester-imide) resin obtained was found to be easily dissolved in glycidyl methacrylate (GMA) to give a homogeneous resin composition with low viscosity, which was then thermally cured into thermosetting poly(ester-imide)/glycidyl polymethacrylate polymer composite (UPEI-50/GMA). Effects of curing processing parameters such as the curing temperature and curing time, the reactive monomer concentration and the initiator amount etc. on curing reaction were systematically investigated. Experimental results indicated that the thermally cured UPEI-50/GMA polymer composite exhibited outstanding thermal stability, mechanical and electrical insulating properties. 相似文献
12.
Epiclon [3a,4,5,7a‐tetrahydro‐7‐methyl‐5‐(tetrahydro‐2,5‐dioxo‐3‐furanyl)‐1,3‐isobenzofurandione] (1) was reacted with L ‐methionine (2) in acetic acid and the resulting imide‐acid 3 was obtained in high yield. The diacid chloride 4 was prepared from diacid derivative 3 by reaction with thionyl chloride. Thermostable poly(amide‐imide)s containing epiclon structure were synthesized by reacting of diacid chloride 4 with various aromatic diamines. Polymerization reaction was performed by two conventional methods: low temperature solution polycondensation and short period reflux conditions. In order to compare conventional solution polycondensation reaction methods with microwave‐assisted polycondensation, the reactions were also carried out under microwave conditions with a small amount of o‐cresol that acts as a primary microwave absorber. The reaction mixture was irradiated for 6 min with 100% radiation power. Several new optically active poly(amide‐imide)s with inherent viscosity ranging from 0.15 to 0.36 dl/g were obtained with high yield. All of the above polymers were fully characterized by 1H‐NMR, FT‐IR, elemental analyses and specific rotation techniques. Some structural characterizations and physical properties of these new optically active poly(amide‐imide)s are reported. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
13.
p-tert-Butylhexahomotrioxacalix[3]arene tri(adamantyl)ketone (1b) was synthesized for the first time. Compound 1b was obtained in a cone conformation in solution at room temperature, as established by NMR spectroscopy (1H and 13C). The binding properties of ligand 1b for alkali, alkaline earth, transition, heavy metal and lanthanide cations have been assessed by phase transfer and proton NMR titration experiments. Molecular mechanics and ab initio techniques were also employed to complement the NMR data. The results are compared to those obtained with other closely related homooxacalixarene derivatives. Although triketone 1b is a weak extractant, it shows a strong peak selectivity for Na+ and also some preference for Ag+. Proton NMR titrations indicate the formation of 1:1 complexes between 1b and the cations studied, and also that they should be located inside the cavity defined by the phenoxy and carbonyl oxygen atoms. Although the molecular mechanics results show little correlation with the NMR data, a good agreement was obtained with the ab initio models. 相似文献
14.
Lie Chen Yiwang Chen Kai Yao Weihua Zhou Fan Li Liping Chen Rongrong Hu Ben Zhong Tang 《Journal of polymer science. Part A, Polymer chemistry》2009,47(18):4723-4735
Series of poly(p‐phenylene)s (PPPs) containing terphenyl mesogenic pendants with cyano and methoxy terminal groups by flexible ? COO(CH2)6O? bridge [ P(CN) and P(OCH3) ] are synthesized through Yamamoto polycondensation with Ni‐based complex catalysts. The effects of the structural variation on their properties, especially their mesomorphism, ultraviolet–visible (UV), and photoluminescence behaviors, are studied. All of the polymers are stable, losing little of their weights when heated to ≥340 °C. The polymers show good solubility and can be dissolved in common solvents. P(CN) with cyano terminal group shows enantiotropic SmAd phase with bilayer packing arrangement, while P(OCH3) with methoxy terminal group readily forms nematic and SmAd phase when heated and cooled. Photoexcitation of their solutions induces strong blue light emission. Compared with P(OCH3) , the light‐emitting bands of polymer P(CN) is slightly redshifted to 428 nm and the emission intensity of P(CN) is much stronger, due to the existence of donor–acceptor pairs. More interestingly, both of the polymers exhibit obvious Cotton effect on the CD spectra, resulting from the predominant screw sense of the backbone. This indicates that the bulky mesogenic pendant orientating around the backbone will force the main chain with helical conformation in the long region due to steric crowdedness. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4723–4735, 2009 相似文献
15.
Shadpour Mallakpour Elaheh Kowsari 《Journal of polymer science. Part A, Polymer chemistry》2003,41(24):3974-3988
3,3′,4,4′‐Diphenylsulfonetetracarboxylic dianhydride was reacted with L ‐phenylalanine in acetic acid, and the resulting imide acid ( 3 ) was obtained in high yield. The diacid chloride ( 4 ) was obtained from its diacid derivative ( 3 ) by reaction with thionyl chloride. The polycondensation reaction of 4 with several aromatic diamines such as 4,4′‐sulfonyldianiline, 4,4′‐diaminodiphenyl methane, 4,4′‐diaminodiphenylether, p‐phenylenediamine, m‐phenylenediamine, 2,4‐diaminotoluene, and 1,5‐diaminonaphthalene was developed with a domestic microwave oven in the presence of trimethylsilyl chloride and a small amount of a polar organic medium such as o‐cresol. The polymerization reactions were also performed with two other methods: low‐temperature solution polycondensation in the presence of trimethylsilyl chloride and reflux conditions. A series of optically active poly(amide‐imide)s with moderate inherent viscosities of 0.21–0.42 dL/g were obtained in high yield. All of the aforementioned polymers were fully characterized by IR, 1H NMR elemental analyses, and specific rotation techniques. Some structural characterizations and physical properties of these optically active poly(amide‐imide) s are reported. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3974–3988, 2003 相似文献