首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spherical mesoporous silica–alumina aerogel like beads based on sol–gel technology and the drop wise addition have been synthesized and used as catalyst support for phosphotungstic acid (PWA). Their catalytic performances in the isopropylation of naphthalene with isopropanol were investigated in a batch reactor. It was found that PWA was highly dispersed on the silica–alumina support and their Keggin structure can be retained. In addition, PWA/SiO2–Al2O3 catalyst showed high surface area, both of Lewis acid sites and Brönsted acid sites. Because of having more Brönsted acid sites, silica–alumina supported acid catalysts showed much higher conversion (87.97 %) and selectivity to diisopropylnaphthalenes (41.41 %) and β,β-products (59.82 %) than pure acid and reactive supports in the isopropylation of naphthalene. The catalytic behavior has been discussed in relation with the physical chemical properties of catalysts, reaction and activation temperature and reaction time.  相似文献   

2.
Chemically modified silica gels are investigated with respect to identity, purity and degree of surface coverage using diffuse reflectance FTIR (DRIFT) Spectroscopy. We report the results for two bonded HPLC phases, pyrene butyric acid propylamido- and octadecyl-groups grafted on irregular porous silica gel. For quantitative determination calibration standards are prepared by adsorbing structurally similar ligand compounds onto the surface of the silica gel; these coated materials give linear calibration curves up to a concentration of 1 mmol/g modified silica gel.  相似文献   

3.
Chromatographic properties of silica-, zirconia- and alumina-based columns with octadecyl-, polyethylene glycol- and pentafluorophenylpropyl-bonded stationary phases were tested. Selectivities of nine columns for LC were characterized using chromatographic methods including Walters, Engelhardt, Tanaka and Galushko hydrophobicity and silanol activity tests, measurements of methylene selectivity in various aqueous-methanol and aqueous-acetonitrile mobile phases and of gradient lipophilic capacity as a measure of the effect of the sample hydrophobicity on gradient-elution separations. A semi-empirical interaction indices model, assuming a predominant role of the solvophobic interactions of test compounds with different polarities, was compared with the linear free energy relationships approach taking into account selective polar interactions. The interaction indices model was applied to both non-polar stationary phases bonded on silica, alumina and zirconia supports, and to the non-modified adsorbents in the normal-phase LC. The retention data of isomeric naphthalene disulfonic acids were used to compare the attractive and repulsive ionic interactions of the columns in purely aqueous mobile phases. The results of the hydrophobicity and polarity tests were consistent, and allowed column characterization and classification. Silanol activity was important with octadecyl silica columns, but was relatively insignificant with bonded polyethylene glycol and pentafluorophenylpropyl phases on silica gel support. Polar interactions with the alumina and zirconia support materials significantly affect the retention.  相似文献   

4.
A set of seven homemade octadecyl silica‐based bonded phases was investigated. Their zeta potential data in methanol and ACN as well as in methanol–water and ACN–water solution were obtained using Zetasizer. The influence of both the coverage density of bonded ligands and the end‐capping of the modified surface on these data was investigated. Presented results may give useful information about the accessibility of the residual silanols in different mobile phases during the chromatographic analysis. Those measurements may be useful to choose chemically bonded stationary phases for CEC. The results also confirm the phenomena of anion exclusion from the pores of stationary‐bonded phase.  相似文献   

5.
制备了氨丙基键合硅胶(SiO2-N)、乙二胺-N-丙基键合硅胶(SiO2-2N)、二乙烯三胺基键合硅胶(SiO2-3N)、三乙烯四胺基键合硅胶(SiO2-4N)、四乙烯五胺基键合硅胶(SiO2-5N)、五乙烯六胺基键合硅胶(SiO2-6N)和聚乙烯亚胺基键合硅胶(SiO2-nN),一步法制备的SiO2-N和SiO2-2N的胺基键合密度高达2.07 mmol/g和1.71mmol/g,两步法制备的SiO2-nN的胺基键合密度为0.02mmol/g,其余胺基键合硅胶中胺基密度约为0.50mmol/g。这7种胺基键合硅胶被用于水溶液中常见重金属离子Pb2+的吸附研究。结果表明,在30℃条件下,分别加入10 mL 400 mg/L的Pb2+溶液(pH 5)和20 mg胺基键合硅胶进行吸附,10 h后,Pb2+吸附量达到最大,吸附过程符合Freundlich等温方程。SiO2-N、SiO2-2N、SiO2-3N、SiO2-4N、SiO2-5N、SiO2-6N和SiO2-nN对Pb2+的吸附量依次为131.28、138.98、85.37、75.22、61.87、79.12和114.06 mg/g,这些胺基键合硅胶在吸附Pb2+方面均非常具有潜力。  相似文献   

6.
The joint application of MS, infrared and (13)C NMR techniques for the determination of metal-DTPA structures (metal=Zn and Cd; DTPA=diethylenetriaminepentacetic acid) is reported. Mass spectrometry allowed determining the 1:1 stoichiometry of the complexes, while infrared analysis suggested that both nitrogen and carboxyl groups are sites for complexation. The (13)C NMR spectrum for the cadmium-containing complex evidenced the existence of free and complexed carboxyl groups, due to a straight singlet at 179.0 ppm (free carboxylic (13)C) and to two broad singlets or a broad doublet at 178.3 ppm (complexed carboxylic (13)C, (2)J(Cd-C(=O))=45.2 Hz). A similar interpretation might be given for the zinc derivative and, with the aid of DFT calculations, structures for both complexes were then proposed.  相似文献   

7.
The retention and selectivity of the chromatographic separation of basic (cationic) analytes on a polybutadiene-coated zirconia (PBD-ZrO2) stationary phase have been studied in greater detail than in previous studies. These separations are strongly influenced by the chemistry of the accessible surface of zirconia. In the presence of buffers which contain hard Lewis bases (e.g., phosphate, fluoride, carboxylic acids) zirconia's surface becomes negatively charged due to adsorption of the buffer anion at the hard Lewis acid sites. Consequently, under most conditions (e.g., neutral pH), cationic analytes undergo both hydrophobic and cation-exchange interactions. This mixed-mode retention process generally leads to greater retention factors for cations relative to those on silica-based reversed phases despite the lower surface areas of the zirconia phase, but, more importantly, adsorption of hard Lewis bases can be used to control the chromatographic selectivity for cationic analytes on these zirconia-based stationary phases. In contrast to our prior work, here we show that when mixed-mode retention takes place, both retention and selectivity are easily adjusted by changing the type of hard Lewis base buffer anion, the type of buffer counter-ion (e.g., sodium, potassium, ammonium), the pH, and the ionic strength of the eluent as well as the type and amount of organic modifier.  相似文献   

8.
Abstract

A rapid method determining the surface silanols of silica gels and HPLC bonded phases involves a titration of silica gel with sodium hydroxide, in a medium of any of the following 10% aqueous salts: sodium chloride, sodium nitrate, sodium sulfate, potassium chloride, potassium nitrate and potassium sulfate. The silanols are quantified as m eg/g. It is possible to determine cation exchange capacity of a cation-exchanger due to an acid as an end group and surface silanols separately.  相似文献   

9.
Acid centers on the surface of polyzirconiummethylsiloxanes (PZMS) containing 5 and 10% ZrO2 were studied by diffuse-reflectance IR-spectroscopy. Deuterated acetonitrile adsorbed at room temperature at a 96 torr saturated vapor pressure was used as a probe-molecule for acid centers. It was shown that zirconium ions were not built into the matrix but were situated predominantly on the surface of the siliconoxygen framework of silica gels. The introduction of zirconium ions into the polymethylsiloxane matrix at the stage of sol formation caused the appearance of Lewis acid centers (coordinatively unsaturated zirconium ions) on the surface of PZMS along with centers of the physical adsorption of CD3CN.  相似文献   

10.
Trace elements in different silica gels are determined by neutron activation analysis. The presence of 20 elements in the ppm range and of 15 elements in the ppb range is established in all silica gels; even in spherical material probably obtained via an organosilicium starting material. Removal of these elements by acid treatment before and after derivatization to a reversed-phase is studied. This is only partially effective. The resulting HPLC phases are, however, much better in cases where trace elements are detrimental. Even octadecyl derivatized silicagel can withstand boiling in 12 N hydrochloric acid without loosing significant amounts of bonded organic material.  相似文献   

11.
Mesostructured gamma-Al(2)O(3) with a lathlike framework morphology   总被引:1,自引:0,他引:1  
A novel three-step assembly pathway is reported for the formation of a mesostructured alumina with framework pore walls made of crystalline, lathlike gamma-Al(2)O(3) nanoparticles. In the initial supramolecular assembly step of the pathway a mesostructured alumina with a wormhole framework morphology and amorphous pore walls is assembled through the hydrolysis of Al(13) oligocations and hydrated aluminum cations in the presence of a nonionic diblock or triblock poly(ethylene oxide) surfactant as the structure-directing porogen. The walls of the initial mesostructure are then transformed in a second hydrolysis step at a higher temperature to a surfactant-boehmite mesophase, denoted MSU-S/B, with a lathlike framework made of boehmite nanoparticles. A final thermal reaction step topochemically converts the intermediate boehmitic mesophase to a mesostructure with crystalline gamma-Al(2)O(3) pore walls, denoted MSU-gamma, with retention of the lathlike framework morphology. The boehmitic MSU-S/B intermediates formed from the chloride salts of aluminum incorporate chloride anions into the mesostructure. Chloride ion incorporation tends to disorder the nanoparticle assembly process, leading to a broadening of the slit-shaped framework pores in the final MSU-gamma phases and to the introduction of intra- and interparticle textural mesopores. However, the well-ordered MSU-gamma phases made from aluminum nitrate as the preferred aluminum reagent exhibit narrow framework pore size distributions and average pore sizes that are independent of the surfactant size and packing parameter, in accord with a lathlike framework assembled from nanoparticles of regular size and connectivity. The high surface areas ( approximately 300-350 m(2)/g) and pore volumes ( approximately 0.45-0.75 cm(3)/g) provided by these mesostructured forms of gamma-Al(2)O(3) should be useful in materials and catalytic applications where the availability of surface Lewis acid sites and the dispersion of supported metal centers govern reactivity.  相似文献   

12.
The aim of this work is to develop a cheap and green chemical process and this paper describes the catalytic commotion of locally collected sand in Friedel–Craft's Acylation of aromatic compounds like benzene, anisole, aniline, naphthalene and phenol etc. The sand consists of silica and alumina as analyzed by means of EDAX and acts as a green Lewis acid. The catalyst was also characterized by using BET, SEM, and XRD techniques.  相似文献   

13.
通过浸渍法对ZSM-5进行金属M(M为Mg、Ni、Sr)改性,合成法制备了M-ZSM-5-SBA-15复合分子筛,采用XRD、N2吸附-脱附、FT-IR、NH3-TPD和Py-FTIR等技术对样品进行表征,考察了HZSM-5的硅铝比、不同金属对ZSM-5-SBA-15复合分子筛烷基化性能的影响。结果表明,HZSM-5的硅铝比为80时,ZSM-5-SBA-15复合分子筛的烷基化性能较好,Sr的引入钝化了ZSM-5-SBA-15(80)的强B酸中心,降低了B酸与L酸的比值,Sr-ZSM-5-SBA-15(80)的甲苯甲醇烷基化性能明显提高,甲苯转化率为30.15%,对二甲苯选择性为77.41%。  相似文献   

14.
In the electrochemical reduction of N-sulfonylbenz[c,d]indolin-2-ones, anion radicals that are detectable by ESR may be formed, with structures that correspond to either the original molecule or isomers of that molecule. Substituents that localize the unpaired electron density on the naphthalene ring system increase the probability of forming ESR-detectable free radicals. In the primary anion radicals, the unpaired electron is localized mainly (>70%) on the naphthalene nucleus. Replacement of the keto group in the molecules of naphthostyrils by a thiocarbonyl group increases the unpaired electron density on the naphthalene ring system of the primary anion radicals. For all of the compounds, parameters of electrochemical reduction in dimethylformamide have been established, under conditions of polarography and cyclic voltammetry.Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 8, pp. 1068–1078, August, 1993.  相似文献   

15.
Zirconia is known to be one of the best chromatographic support materials due to its excellent chemical, thermal, and mechanical stability. A quinine carbamate-coated zirconia was prepared as a chiral stationary phase for separation of enantiomers of DNP-amino acids in reversed-phase liquid chromatography. Retention and enantioselectivity of this phase were compared to those for quinine carbamate bonded onto silica. Most amino acids studied were separated on the quinine carbamate-zirconia CSP although retention was longer and chiral selectivity was somewhat lower than on the corresponding silica CSP. Increased retention and decreased selectivity are probably due to strong non-enantioselective Lewis acid-base interactions between the amino acid molecule and the residual Lewis acid sites on the zirconia surface.  相似文献   

16.
The local stability of Al atoms replacing Si in the zeolite framework is compared for all inequivalent tetrahedral (T) sites in mordenite. For Al/Si substitutions in two T sites the stable location of the compensating extraframework Zn(2+) cation forming a Lewis acid site is determined. In the most stable Zn-MOR structures Zn(2+) is located in a small ring (5MR, 6MR) containing two Al/Si substitutions. In less stable structures the Al atoms are placed at larger distances from each other and Zn(2+) interacts with only one Al site. The simulated adsorption of H(2) and CH(4) shows that adsorption strength decreases with increasing stability of the Zn(2+) Lewis site. A higher adsorption strength is observed for Zn(2+) deposited in the 5MR than for the 6MR. The reactivity of a series of stable Zn(2+) Lewis sites is tested via the dissociative adsorption of H(2) and CH(4). The heterolytic dissociation of the adsorbed molecule on the extraframework Zn(2+) cation produces a proton and an anion. The anion binds to Zn(2+) and proton goes to the zeolite framework, restoring a Br?nsted acid site. Because bonding of the anion to Zn(2+) is almost energetically equivalent for Zn(2+) in any of the extraframework positions the dissociation is governed by stabilizing bonding of the proton to the framework. Those structures which can exothermically accommodate the proton represent reaction pathways. Due to the repulsion between the proton and Zn(2+) the most favorable proton-accepting O sites are not those of the ring where Zn(2+) is deposited, but O sites close to the ring. Large differences are observed for neighboring positions in a- and b-directions and those oriented along the c-vector. Finally, among the stable Zn(2+) Lewis sites not all represent reaction pathways for dehydrogenation. For all of them the dissociation of H(2) is an exothermic process. In structures exhibiting the highest reactivity the Al/Si substitutions are placed at a large distance and the Zn(2+) cation interacts with O-atoms next to Al in the T4 site of the 5MR. This Lewis site is strong enough to break the C-H bond in the CH(4) molecule.  相似文献   

17.
The retention behavior of five disubstituted benzene derivatives and two naphthalene derivatives is examined by using a chemically bonded β‐cyclodextrin silica stationary phase with the moiety containing the s‐triazine. The chromatographic results of five disubstituted benzene derivatives and two naphthalene derivatives show that effective separation is achieved on this stationary phase by high‐performance liquid chromatography. The results of the present investigation indicate that the formation of inclusion complexes plays a dominant role in the separation mechanism. However, the selectivity can be significantly enhanced by the n‐n interactions between the s‐triazine ring of the chemically bonded β‐cyclodextrin silica stationary phase and the aromatic ring of solutes. For example, the effective separation of the o‐, m‐, and p‐toluidine isomers on this stationary phase with the moiety containing the s‐triazine ring was better than on that of some β‐cyclodextrin bonded stationary phases without the moiety containing s‐triazine ring.  相似文献   

18.
Abstract

The relationship between the textural properties (pore size, pore volume and surface area) of reversed-phase silica gel packings for HPLC and the dynamic loading capacity of large biomolecules was studied by using silica gels manufactured by similar processes. Several silica gels whose unbonded pore diameters range from 100 to 250 A and whose pore volumes range from 1.0 to 1.4 ml/g have been prepared and characterized. The bonded phase is monomeric C18. The textural properties of the bonded silica gels are also presented and related to the properties of the unbonded silica gels.

Chromatographic evaluation with typical proteins in an underload-to-overload condition was performed in order to relate the influence of textural properties of silica gel to loading capacity and resolution. The packings with larger pore size and pore volume produced better column performance and higher loading of proteins.  相似文献   

19.
Acid activated metakaolins (AAMKs) have been prepared by calcination of the natural clay at 600 degrees C to provide a metakolin which was then leached at 80 degrees C for 3 h using 1M, 2M, 3M, and 6M HCl. These materials were characterized and their ability to transform the off gases from HDPE decomposition into useful aromatic species was evaluated. The amount of adsorbed water and the number of acid sites increased with the severity of acid treatment. Variable temperature DRIFTS spectroscopy of pyridine treated samples revealed that both Br?nsted and Lewis acid centers were present until 425 degrees C. Pyridine bonded to the Lewis acid centers was more thermally stable. The AAMKs were all selective to the production of toluene with respectable, but lesser, amounts of xylenes and trimethylbenzenes. This selectivity contrasts with that of acid leached and pillared smectites which are selective toward trimethylbenzene.  相似文献   

20.
The mechanism of isopropanol dehydration on amorphous silica–alumina (ASA) was unraveled by a combination of experimental kinetic measurements and periodic density functional theory (DFT) calculations. We show that pseudo‐bridging silanols (PBS‐Al) are the most likely active sites owing to the synergy between the Brønsted and Lewis acidic properties of these sites, which facilitates the activation of alcohol hydroxy groups as leaving groups. Isopropanol dehydration was used to specifically investigate these PBS‐Al sites, whose density was estimated to be about 10−1 site nm−2 on the silica‐doped alumina surface under investigation, by combining information from experiments and theoretical calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号