首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Novel Ti-O-Ti bonding species constructed in a metal-oxide cluster   总被引:2,自引:0,他引:2  
The preparation and structural characterization of a novel Ti-O-Ti bonding complex constructed in the mono-lacunary alpha-Keggin polyoxometalate (POM), are described. The water-soluble, crystalline complex with a formula of K5H2[[{Ti(OH)(ox)}2(micro-O)](alpha-PW11O39)] x 13H2O 1 was prepared in 30.2% (0.60 g scale) yield in a 1 : 3 molar-ratio reaction of the tri-lacunary species of alpha-Keggin POM, Na9[A-PW9O34] x 19H2O, with the titanium(IV) source, K2TiO(ox)2 x 2H2O (H2ox = oxalic acid), in HCl-acidic solution (pH 0.08), and characterized by complete elemental analysis, thermogravimetric and differential thermal analyses (TG/DTA), FTIR, solution (31P, 183W, 1H and 13C) NMR spectroscopy and X-ray crystallography. The complex was also obtained in 47.6% (0.81 g scale) yield in a 1 : 2 molar-ratio reaction of the mono-lacunary Keggin POM, K7[PW11O39] x 10H2O, with the anionic titanium(IV) complex under acidic conditions. The molecular structure of [[{Ti(OH)(ox)}2(micro-O)](alpha-PW11O39)]7- 1a, was successfully determined. This POM in the solid state is composed of one host (mono-lacunary site) and two guests (two octahedral Ti groups), in contrast to most titanium (IV)-substituted POMs consisting of one host and one guest. On the other hand, the 31P NMR measurements revealed that in aqueous solution this POM was present under a dissociation equilibrium which depends upon both temperature and pH.  相似文献   

2.
The syntheses and crystal structures of a series of zirconium(IV) and hafnium(IV) complexes with Dawson monovacant phosphotungstate [alpha2-P2W17O61](10-) and in situ-generated Keggin monovacant phosphotungstate [alpha-PW11O39](7-), which was obtained by a reaction of [alpha-PW12O40](3-) with Na2CO3, are described. K15H[Zr(alpha2-P2W17O61)2].25H2O (K-1), K16[Hf(alpha2-P2W17O61)2].19H2O (K-2), (Et2NH2)10[Zr(alpha-PW11O39)2].7H2O (Et2NH2-3), and (Et2NH2)10[Hf(alpha-PW11O39)2].2H2O (Et2NH2-4), being afforded by reactions in aqueous solutions of monolacunary Dawson and Keggin polyoxotungstates with ZrCl2O.8H2O and HfCl2O.8H2O followed by exchanging countercations, were obtained as analytically pure, homogeneous colorless crystals. Single-crystal X-ray structure analyses revealed that the Zr(IV) and Hf(IV) ions are in a square antiprismatic coordination environment with eight oxygen atoms, four of them being provided from each of the two monovacant polyanion ligands. Although the total molecular shapes and the 8-coordinate zirconium and hafnium centers of complexes 1-4 are identical, the bonding modes (bond lengths and bond angles) around the zirconium(IV) and hafnium(IV) centers were dependent on the monovacant structures of the polyanion ligands. Additionally, the characterization of complexes 1-4 was accomplished by elemental analysis, TG/DTA, FTIR, and solution (31P and 183W) NMR spectroscopy.  相似文献   

3.
The reaction of a 1:2 mixture of bismuth(III) salicylate with titanium(IV) isopropoxide in refluxing toluene has been investigated and found to proceed with ligand exchange to produce the new heterobimetallic complexes BiTi(4)(sal)(6)(mu-O(i)Pr)(3)(O(i)Pr)(4) (1), Bi(4)Ti(4)(sal)(10)(mu-O(i)Pr)(4)(O(i)Pr)(4) (2), and Bi(8)Ti(8)(sal)(20)(mu-O(i)Pr)(8)(O(i)Pr)(8) (3). Complex 1 is the major product, while 2 and 3 were identified as minor products from the reaction. Compound 1 is produced pure and in high yield by employing stoichiometric amounts of reagents; its crystal structure consists of a [Ti(4)(sal)(6)(O(i)Pr)(7)](3)(-) ion capped by a Bi(3+) ion. Complexes 2 and 3 exhibit cyclic ring structures of bismuth and titanium atoms showing crystallographically imposed inversion symmetry. Both structures occlude large quantities of lattice solvent. The compositional and structural parameters from the single crystal studies indicate that complexes 2 and 3 may represent sequential steps in a ligand exchange process between the two metal species, while the reactivity patterns that were observed provide clues about the solution state structure of bismuth(III) salicylate itself. The 2D COSY (1)H NMR spectrum of 1 indicates retention of the asymmetric structure in solution as evidenced by the presence of 14 diastereotopic isopropoxide methyl resonances.  相似文献   

4.
The water-soluble complexes of Ti(IV) with citrate are of interest in environmental, biological, and materials chemistry. The aqueous solution speciation is revealed by spectropotentiometric titration. From pH 3-8, given at least three equivalents of ligand, 3:1 citrate/titanium complexes predominate in solution with successive deprotonation of dangling carboxylates as the pH increases. In this range and under these conditions, hydroxo- or oxo-metal species are not supported by the data. At ligand/metal ratios between 1:1 and 3:1, the data are difficult to fit, and are consistent with the formation of such hydroxo- or oxo- species. Stability constants for observed species are tabulated, featuring log beta-values of 9.18 for the 1:1 complex [Ti(Hcit)](+), and 16.99, 20.41, 16.11, and 4.07 for the 3:1 complexes [Ti(H(2)cit)(3)](2-), [Ti(H(2)cit)(Hcit)(2)](4-), [Ti(Hcit)(2)(cit)](6-), and [Ti(cit)(3)](8-), respectively (citric acid = H(4)cit). Optical spectra for the species are reported. The complexes exhibit similar yet distinct spectra, featuring putative citrate-to-Ti(IV) charge-transfer absorptions (lambda(max) approximately 250-310 nm with epsilon approximately 5000-7000 M(-)(1) cm(-1)). The prevailing 3:1 citrate/titanium ratio in solution is supported by electrospray mass spectrometry data. The X-ray crystal structure of a fully deprotonated tris-citrate complex Na(8)[Ti(C(6)H(4)O(7))(3)].17H(2)O (1) (or Na(8)[Ti(cit)(3)].17H(2)O) that crystallizes from aqueous solution at pH 7-8 is reported. Compound 1 crystallizes in the triclinic space group P, with a = 11.634(2) Angstroms, b = 13.223(3) Angstroms, c = 13.291(3) Angstroms, V = 1982.9(7) Angstroms(3), and Z = 2.  相似文献   

5.
A ditopic chelating ligand (H(6)4) that bears catechol and diethylenetriamine-N,N,N',N',N'-pentaacetate (DTPA) has been designed and shown to specifically bind lanthanide(III) ions at the DTPA core ([Ln(H(2)4)(H(2)O)](-)) and further self-assemble with titanium(IV), thereby giving rise to the formation of a supramolecular metallostar complex with a lanthanide(III)-to-titanium(IV) ratio of 3:1, [(Ln4)(3)Ti(H(2)O)(3)](5-) (Ln=La, Eu, Gd). The efficacy of the metallostar complex as a potential bimodal optical/magnetic resonance imaging (MRI) agent has been evaluated. Nuclear magnetic relaxation dispersion (NMRD) measurements for the [(Gd4)(3)Ti(H(2)O)(3)](5-) complex have demonstrated an enhanced r(1) relaxivity that corresponds to 36.9 s(-1) mM(-1) per metallostar molecule at 20 MHz and 310 K, which is a result of a decreased tumbling rate. The ability of the complex to bind to human serum albumin (HSA) was also examined by relaxometric measurements. In addition, upon UV irradiation the [(Gd4)(3)Ti(H(2)O)(3)](5-) complex exhibits broad-band green emission in the range 400-750 nm with a maximum at 490 nm. Taking into account the high relaxivity and luminescence properties, the [(Gd4)(3)Ti(H(2)O)(3)](5-) complex is a good lead compound for the development of efficient bimodal contrast agents.  相似文献   

6.
A time-resolved mass spectrometric technique has been used for the determination of rates of exchange of mu-O atoms with water for the complexes [(mes-terpy)2Mn2(III/IV)(mu-O)2(H2O)2](NO3)3 (1, mes-terpy = 4'-mesityl-2,2':6',2' '-terpyridine), [(bpy)4Mn2(III/IV)(mu-O)2](ClO4)3 (2, bpy = 2,2'-bipyridine), [(phen)4Mn2(III/IV)(mu-O)2](ClO4)3 (3, phen = 1,10-phenanthroline), [(bpea)2Mn2(III/IV)(mu-O)2(mu-OAc)](ClO4)2 (4, bpea = bis(2-pyridyl)ethylamine), [(bpea)2Mn2(IV/IV)(mu-O)2(mu-OAc)](ClO4)3 (4ox), [(terpy)4Mn4(IV/IV/IV/IV)(mu-O)5(H2O)2](ClO4)6 (5, terpy = 2,2':6',2'-terpyridine), and [(tacn)4Mn4(IV/IV/IV/IV)(mu-O)6]Br(3.5)(OH)0.5.6H2O (6, tacn = 1,4,7-triazacyclononane). The rate of exchange of mu-OAc bridges with free acetate in solution has been measured for complexes 4 and 4ox. These are the first measurements of rates of ligand exchange on biologically relevant high-valent Mn complexes. The data analysis method developed here is of general utility in the quantitation of isotope exchange processes by mass spectrometry. We find that the presence of labile coordination sites on Mn increases mu-O exchange rates, and that all-Mn(IV) states are more inert toward exchange than mixed Mn(III)-Mn(IV) states. The rates of mu-O exchange obtained in this work for a di-mu-oxo Mn2(III/IV) dimer with labile coordination sites are compared with the oxygen isotope incorporation rates from substrate water to evolved dioxygen measured in different S states of the oxygen evolving complex (OEC) of photosystem II (PSII). On the basis of this comparison, we propose that both substrate waters are not bound as mu-O bridges between Mn atoms in the S2 and S3 states of the OEC.  相似文献   

7.
A novel V-shaped polyoxotungstate is formed when Ce(IV) metal centres bridge monolacunary [PW(11)O(39)](7-) anions to an unusual 1,4-bilacunary [PW(10)O(38)](11-) anion which appears with an unprecedented bridging structural motif.  相似文献   

8.
A novel titanium-substituted silicotungstate cluster of [{gamma-SiTi2W10O36(OH)2}2(mu-O)2]8- (1) is synthesized by the introduction of titanium(IV) ions into a divacant lacunary gamma-Keggin-type silicotungstate of [gamma-SiW10O36]8-. This titanium-substituted polyoxometalate, 1, exhibits a dimeric structure. One half of the gamma-Keggin fragment of 1 contains a dinuclear titanium center bridged by two hydroxo groups, and the resulting Ti2(mu-OH)2 core connects to the other Ti2(mu-OH)2 core of the paired gamma-Keggin subunit through Ti-O-Ti linkages. The Ti2(mu-OH)2 core of 1 reacts with MeOH to form the corresponding alkoxo derivative, [{gamma-SiTi2W10O36(OH)(OMe)}2(mu-O)2]8- (2). Two of four hydroxo groups of the Ti2(mu-OH)2 cores in 1 are replaced by methoxo groups to give the Ti2(mu-OH)(mu-OMe) core, and the Ti-O-Ti linkages connecting two gamma-Keggin subunits are maintained in 2. The gamma-Keggin dititanium-substituted silicotungstate 1 catalyzes mono-oxygenation reactions, such as the epoxidation of olefins and sulfoxidation of sulfides with hydrogen peroxide under mild conditions, while the monotitanium-substituted silicotungstate, [alpha-SiTiW11O39]4- (3), and the fully occupied silicododecatungstate, [gamma-SiW12O40]4-, are inactive. The epoxidation with 1 is stereospecific; the configurations around the C=C double bonds of the cis- and trans-olefins are completely retained in the corresponding epoxides. For the competitive epoxidation of cis- and trans-2-octenes, the ratio of the formation rate of cis-2,3-epoxyoctane to that of the trans isomer (R(cis)/R(trans)) is relatively high (21.3) in comparison with those observed for the tungstate catalysts, including [gamma-SiW10O34(H2O)2]4-. The epoxidation of 3-methyl-1-cyclohexene is highly diastereoselective and gives the corresponding epoxide with an anti configuration. The molecular structure of 1 is preserved during the catalysis because the 29Si and 183W NMR spectra of the catalyst recovered after completion of the oxidation are consistent with those of as-prepared compound 1. All these facts suggest the contribution of rigid nonradical oxidants generated on the multinuclear titanium center of 1.  相似文献   

9.
The reaction of the cyclotetraphosphate ion (P(4)O(12)(4)(-)) with [CpTiCl(3)] (Cp = eta(5)-C(5)Me(5)) gives [(CpTi)(2)(P(4)O(12))(2)](2)(-) where the P(4)O(12) ligands adopt a saddle conformation, while that with [(CpTiCl)(3)(mu-O)(3)] leads to [(CpTi)(3)(mu-O)(3)(P(4)O(12))](-) containing a crown form P(4)O(12) ligand; both products feature their unique cage structures. On the other hand, the reactions of the cyclotriphosphate ion (P(3)O(9)(3)(-)) with [(CpTiCl(2))(2)(mu-O)] and [(CpTiCl)(3)(mu-O)(3)] afford [(CpTi)(2)(mu-O)(P(3)O(9))(2)](2)(-) and [(CpTi)(3)(mu-O)(3)Cl(P(3)O(9))](-), respectively, and in both cases the P(3)O(9) ligands bridge two titanium centers with an eta(2):eta(1) mode.  相似文献   

10.
The photochemical treatment of mu(3)-alkylidyne complexes [[TiCp*(mu-O)](3)(mu(3)-CR)] (R=H (1), Me (2), Cp*=eta(5)-C(5)Me(5)) with the amines (2,6-Me(2)C(6)H(3))NH(2), Et(2)NH, and Ph(2)NH and the imine Ph(2)C=NH leads to the partial hydrogenation of the alkylidyne moiety that is supported on the organometallic oxide, [Ti(3)Cp*O(3)], and the formation of new oxoderivatives [[TiCp*(3)(mu-CHR)(R'NR")] (R"=2,6-Me(2)C(6)H(3), R'=H, R=H (3), Me (4); R'=R"=Et, R=H (5), Me (6); R'=R"=Ph, R=H (7), Me (8)) and [[TiCp*(mu-O)](3)(mu-CHR)(N=CPh(2))] (R=H (9), R=Me (10)), respectively. A sequential transfer hydrogenation process occurs when complex 1 is treated with tBuNH(2), which initially gives the mu-methylene [[TiCp*(mu-O)](3)(mu-CH(2))(HNtBu)] (11) complex and finally, the alkyl derivative [[TiCp*(mu-O)](3)(mu-NtBu)Me] (12). Furthermore, irradiation of solutions of the mu(3)-alkylidyne complexes 1 or 2 in the presence of diamines o-C(6)H(4)(NH(2))(2) and H(2)NCH(2)CH(2)NH(2) (en) affords [[TiCp*(mu-O)](3)(mu(3)-eta(2)-NC(6)H(4)NH)] (13) and [[TiCp*(mu-O)](3)(mu(3)-eta(2)-NC(2)H(4)NH)] (14) by either methane or ethane elimination, respectively. In the reaction of 1 with en, an intermediate complex [[TiCp*(mu-O)](3)(mu-CH(2))(NHCH(2)CH(2)NH(2))] (15) is detected by (1)H NMR spectroscopy. Thermal treatment of the complexes 4-10 quantitatively regenerates the starting mu(3)-alkylidyne compounds and the amine R'(2)NH or the imine Ph(2)C=NH; however, heating of solutions of 3 or 4 in [D(6)]benzene or a equimolecular mixture of both at 170 degrees C produces methane, ethane, or both, and the complex [[TiCp*(mu-O)](3)[mu(3)-eta(2)-NC(6)H(3)(Me)CH(2)]] (16). The molecular structure of 8 has been established by single-crystal X-ray analysis.  相似文献   

11.
Titanium is a metal frequently employed in a plethora of materials supporting medical applications. In an effort to comprehend the involvement of titanium in requisite biological interactions with physiological ligands, synthetic efforts were launched targeting aqueous soluble species of Ti(IV). To this end, aqueous reactions of TiCl(4) with citric acid afforded expediently, under pH-specific conditions, the colorless crystalline materials Na(6)[Ti(C(6)H(4.5)O(7))(2)(C(6)H(5)O(7))].16H(2)O (1) and Na(3)(NH(4))(3)[Ti(C(6)H(4.5)O(7))(2)(C(6)H(5)O(7))].9H(2)O (2). Complexes 1 and 2 were characterized by elemental analysis, FT-IR, (13)C-MAS solid state and solution NMR, cyclic voltammetry, and X-ray crystallography. 1 crystallizes in the triclinic space group P, with a = 15.511(9) A, b = 15.58(1) A, c = 9.848(5) A, alpha = 85.35(2) degrees, beta = 76.53(2) degrees, gamma = 61.97(2) degrees, V = 2042(2) A(3), and Z = 2. 2 crystallizes in the triclinic space group P, with a = 12.437(5) A, b = 12.440(5) A, c = 12.041(5) A, alpha = 83.08(2) degrees, beta = 81.43(2) degrees, gamma = 67.45(2) degrees, V = 1697(2) A(3), and Z = 2. The X-ray structures of 1 and 2 reveal the presence of a mononuclear complex, with Ti(IV) coordinated to three citrate ligands in a distorted octahedral geometry around Ti(IV). The citrates employ their central alkoxide and carboxylate groups to bind Ti(V), while the terminal carboxylates stay away from the Ti(IV)O(6) core. Worth noting in 1 and 2 is the similar mode of coordination but variable degree of protonation of the bound citrates, with the locus of (de)protonation being the noncoordinating terminal carboxylates. As a result, this work suggests the presence of a number of different Ti(IV)-citrate species of the same nuclearity and coordination geometry as a function of pH. This is consistent with the so far existing pool of mononuclear Ti(IV)-citrate species and provides a logical account of the aqueous speciation in the requisite binary system. Such information is vital in trying to delineate the interactions of soluble and bioavailable Ti(IV) forms promoting biological interactions in humans. To this end, chemical properties, structural attributes, and speciation links to potential ensuing biological effects are dwelled on.  相似文献   

12.
The symmetrically ligated complexes 1, 2, and 3 with a (mu-oxo)bis(mu-acetato)diferric core can be one-electron oxidized electrochemically or chemically with aminyl radical cations [*NR3][SbCl6] in acetonitrile yielding complexes which contain the mixed-valent [(mu-oxo)bis(mu-acetato)iron(IV)iron(III)]3+ core: [([9]aneN3)(2FeIII2)(mu-O)(mu-CH3CO2)2](ClO4)2 (1(ClO4)2), [(Me3[9]aneN3)(2FeIII2)(mu-O)(mu-CH3CO2)2](PF6)2 (2(PF6)(2)), and [(tpb)(2FeIII2)(mu-O)(mu-CH3CO2)2] (3) where ([9]aneN3) is the neutral triamine 1,4,7-triazacyclononane and (Me3[9]aneN3) is its tris-N-methylated derivative, and (tpb)(-) is the monoanion trispyrazolylborate. The asymmetrically ligated complex [(Me3[9]aneN3)FeIII(mu-O)(mu-CH3CO2)2FeIII(tpb)](PF6) (4(PF6)) and its one-electron oxidized form [4ox]2+ have also been prepared. Finally, the known heterodinuclear species [(Me3[9]aneN3)CrIII(mu-O)(mu-CH3CO2)2Fe([9]aneN3)](PF6)2 (5(PF6)(2)) can also be one-electron oxidized yielding [5ox]3+ containing an iron(IV) ion. The structure of 4(PF6).0.5CH3CN.0.25(C2H5)2O has been determined by X-ray crystallography and that of [5ox]2+ by Fe K-edge EXAFS-spectroscopy (Fe(IV)-O(oxo): 1.69(1) A; Fe(IV)-O(carboxylato) 1.93(3) A, Fe(IV)-N 2.00(2) A) contrasting the data for 5 (Fe(III)-O(oxo) 1.80 A; Fe(III)-O(carboxylato) 2.05 A, Fe-N 2.20 A). [5ox]2+ has an St = 1/2 ground state whereas all complexes containing the mixed-valent [FeIV(mu-O)(mu-CH3CO2)2FeIII]3+ core have an St = 3/2 ground state. M?ssbauer spectra of the oxidized forms of complexes clearly show the presence of low spin FeIV ions (isomer shift approximately 0.02 mm s(-1), quadrupole splitting approximately 1.4 mm s(-1) at 80 K), whereas the high spin FeIII ion exhibits delta approximately 0.46 mm s(-1) and DeltaE(Q) approximately 0.5 mm s(-1). M?ssbauer, EPR spectral and structural parameters have been calculated by density functional theoretical methods at the BP86 and B3LYP levels. The exchange coupling constant, J, for diiron complexes with the mixed-valent FeIV-FeIII core (H = -2J S1.S2; S(1) = 5/2; S2 = 1) has been calculated to be -88 cm(-1) (intramolecular antiferromagnetic coupling) and for the reduced diferric form of -75 cm(-1) in reasonable agreement with experiment (J = -120 cm(-1)).  相似文献   

13.
The synthesis of new dinuclear manganese(IV) complexes possessing the [Mn(IV)(2)(mu-O)(2)(mu-O(2)CMe)](3+) core and containing halide ions as terminal ligands is reported. [Mn(2)O(2)(O(2)CMe)Cl(2)(bpy)(2)](2)[MnCl(4)] (1; bpy = 2,2'-bipyridine) was prepared by sequential addition of [MnCl(3)(bpy)(H(2)O)] and (NBzEt(3))(2)[MnCl(4)] to a CH(2)Cl(2) solution of [Mn(3)O(4)(O(2)CMe)(4)(bpy)(2)]. The complex [Mn(IV)(2)O(2)(O(2)CMe)Cl(bpy)(2)(H(2)O)](NO(3))(2) (2) was obtained from a water/acetic acid solution of MnCl(2).4H(2)O, bpy, and (NH(4))(2)[Ce(NO(3))(6)], whereas the [Mn(IV)(2)O(2)(O(2)CR)X(bpy)(2)(H(2)O)](ClO(4))(2) [X = Cl(-) and R = Me (3), Et (5), or C(2)H(4)Cl (6); and X = F(-), R = Me (4)] were prepared by a slightly modified procedure that includes the addition of HClO(4). For the preparation of 4, MnF(2) was employed instead of MnCl(2).4H(2)O. [Mn(2)O(2)(O(2)CMe)Cl(2)(bpy)(2)](2)[MnCl(4)].2CH(2)Cl(2) (1.2CH(2)Cl(2)) crystallizes in the monoclinic space group C2/c with a = 21.756(2) A, b = 12.0587(7) A, c = 26.192(2) A, alpha = 90 degrees, beta = 111.443(2) degrees, gamma = 90 degrees, V = 6395.8(6) A(3), and Z = 4. [Mn(2)O(2)(O(2)CMe)Cl(H(2)O)(bpy)(2)](NO(3))(2).H(2)O (2.H(2)O) crystallizes in the triclinic space group Ponemacr; with a = 11.907(2) A, b = 12.376(2) A, c = 10.986(2) A, alpha = 108.24(1) degrees, beta = 105.85(2) degrees, gamma = 106.57(1) degrees, V = 1351.98(2) A(3), and Z = 2. [Mn(2)O(2)(O(2)CMe)Cl(H(2)O)(bpy)(2)](ClO(4))(2).MeCN (3.MeCN) crystallizes in the triclinic space group Ponemacr; with a = 11.7817(7) A, b = 12.2400(7) A, c = 13.1672(7) A, alpha = 65.537(2) degrees, beta = 67.407(2) degrees, gamma = 88.638(2) degrees, V = 1574.9(2) A(3), and Z = 2. The cyclic voltammogram (CV) of 1 exhibits two processes, an irreversible oxidation of the [MnCl(4)](2)(-) at E(1/2) approximately 0.69 V vs ferrocene and a reversible reduction at E(1/2) = 0.30 V assigned to the [Mn(2)O(2)(O(2)CMe)Cl(2)(bpy)(2)](+/0) couple (2Mn(IV) to Mn(IV)Mn(III)). In contrast, the CVs of 2 and 3 show only irreversible reduction features. Solid-state magnetic susceptibility (chi(M)) data were collected for complexes 1.1.5H(2)O, 2.H(2)O, and 3.H(2)O in the temperature range 2.00-300 K. The resulting data were fit to the theoretical chi(M)T vs T expression for a Mn(IV)(2) complex derived by use of the isotropic Heisenberg spin Hamiltonian (H = -2JS(1)S(2)) and the Van Vleck equation. The obtained fit parameters were (in the format J/g) -45.0(4) cm(-)(1)/2.00(2), -36.6(4) cm(-)(1)/1.97(1), and -39.3(4) cm(-)(1)/1.92(1), respectively, where J is the exchange interaction parameter between the two Mn(IV) ions. Thus, all three complexes are antiferromagnetically coupled.  相似文献   

14.
The preparation and structural characterization of the novel polyoxoanion [(alpha-1,2,3-P(2)W(15)Ti(3)O(62))(4)[mu(3)-Ti(OH)(3)](4)Cl](45-) (1 a; abbreviated to [TiO(6)](16); FW approximately 16 000) which consists of four tri-Ti(IV)-1,2,3-substituted alpha-Dawson substructures, four Ti(OH)(3) bridging groups, and one encapsulated Cl(-) ion, are described. A water-soluble, all-inorganic composition compound of the tetrameric Ti-O-Ti-bridged anhydride form, Na(x)H(45-x)[1 a].y H(2)O (1; x=16-19, y=60-70), which was afforded by the reaction of the tri-lacunary Dawson polyoxotungstate Na(12)[B-alpha-P(2)W(15)O(56)].19 H(2)O with an excess of TiCl(4) in aqueous solution, was obtained as analytically pure, homogeneous colorless crystals. Single-crystal X-ray structure analysis revealed that 1 a was an inorganic, giant "tetrapod"-shaped molecule (inscribed to a sphere with a diameter of approximately 32 A) with approximately T(d) symmetry, in which the 16 edge- and/or corner-shared TiO(6) octahedra were contained. This number of TiO(6) octahedra was larger than that found in other titanium(IV)-substituted polyoxotungstates. Complex 1 was characterized by complete elemental analysis, TG/DTA, FTIR, UV/Vis absorption, and solution ((31)P and (183)W) NMR spectroscopy. The longest wavelength band in the UV/Vis absorption spectra of 1 in water was attributed to the O-->Ti(IV) ligand-to-metal charge-transfer (LMCT) transition: the wavelength of the LMCT band increased linearly as the number of TiO(6) octahedra contained in the Keggin and Dawson polyoxoanions increased. The Ti(n) chromophores formed in the Keggin and Dawson polyoxotungstates are water-soluble analogues of solid TiO(2) or SrTiO(3) as light-semiconductors and photocatalysts.  相似文献   

15.
Preparation and structural characterization of a novel polyoxometalate (POM), [(P(2)W(15)Ti(3)O(60.5))(4)(NH(4))](35-) 1, i.e., an encapsulated NH(4)(+) cation species in the central cavity of a tetramer (called the Dawson tetramer) constituted by trititanium(IV)-substituted α-Dawson POM substructure, are described. POM 1 was synthesized by several different methods and unequivocally characterized by complete elemental analysis, thermogravimetric and differential thermal analysis (TG/DTA), FTIR spectroscopy, solution ((15)N{(1)H}, (31)P, (183)W) NMR spectroscopy, and X-ray crystallography. First, POM 1 was synthesized by a reaction of NH(4)Cl in aqueous solution with a precursor, which was derived by thermal treatment of a monomeric triperoxotitanium(IV)-substituted Dawson POM, [α-1,2,3-P(2)W(15)(TiO(2))(3)O(56)(OH)(3)](9-) 2, for 3 h in an electric furnace at 200 °C. The encapsulated NH(4)(+) cation in 1 was confirmed by (15)N{(1)H} NMR measurement and X-ray crystallography. As another synthesis of 1, a direct exchange of the Cl(-) anion encapsulated in [{α-1,2,3-P(2)W(15)Ti(3)O(57.5)(OH)(3)}(4)Cl](25-) 3 with the NH(4)(+) cation was attained by neutralizing an aqueous solution containing 3 with the addition of aqueous NH(3) (the initial pH of ca. 2-2.5 was changed to 6.4), followed by adding NH(4)Cl. It has been clarified that the conditions as to whether the anion or the cation is encapsulated in the central cavity of the Dawson tetramer were significantly related to the protonation/deprotonation of the bridging oxygen atoms on the intramolecular surface, Ti-O-Ti/Ti-OH-Ti sites constituting the Dawson subunits.  相似文献   

16.
Treatment of titanyl sulfate in dilute sulfuric acid with 1 equiv of NaL(OEt) (L(OEt)(-) = [(eta(5)-C(5)H(5))Co{P(O)(OEt)(2)](3)](-)) in the presence of Na(3)PO(4) and Na(4)P(2)O(7) led to isolation of [(L(OEt)Ti)(3)(mu-O)(3)(mu(3-)PO(4))] (1) and [(L(OEt)Ti)(2)(mu-O)(mu-P(2)O(7))] (2), respectively. The structure of 1 consists of a Ti(3)O(3) core capped by a mu(3)-phosphato group. In 2, the [P(2)O(7)](4-) ligands binds to the two Ti's in a mu:eta(2),eta(2) fashion. Treatment of titanyl sulfate in dilute sulfuric acid with NaL(OEt) and 1.5 equiv of Na(2)Cr(2)O(7) gave [(L(OEt)Ti)(2)(mu-CrO(4))(3)] (3) that contains two L(OEt)Ti(3+) fragments bridged by three mu-CrO(4)(2-)-O,O' ligands. Complex 3 can act as a 6-electron oxidant and oxidize benzyl alcohol to give ca. 3 equiv of benzaldehyde. Treatment of [L(OEt)Ti(OTf)(3)] (OTf(-) = triflate) with [n-Bu(4)N][ReO(4)] afforded [[L(OEt)Ti(ReO(4))(2)](2)(mu-O)] (4). Treatment of [L(OEt)MF(3)] (M = Ti and Zr) with 3 equiv of [ReO(3)(OSiMe(3))] afforded [L(OEt)Ti(ReO(4))(3)] (5) and [L(OEt)Zr(ReO(4))(3)(H(2)O)] (6), respectively. Treatment of [L(OEt)MF(3)] with 2 equiv of [ReO(3)(OSiMe(3))] afforded [L(OEt)Ti(ReO(4))(2)F] (7) and [[L(OEt)Zr(ReO(4))(2)](2)(mu-F)(2)] (8), respectively, which reacted with Me(3)SiOTf to give [L(OEt)M(ReO(4))(2)(OTf)] (M = Ti (9), Zr (10)). Hydrolysis of [L(OEt)Zr(OTf)(3)] (11) with Na(2)WO(4).xH(2)O and wet CH(2)Cl(2) afforded the hydroxo-bridged complexes [[L(OEt)Zr(H(2)O)](3)(mu-OH)(3)(mu(3)-O)][OTf](4) (12) and [[L(OEt)Zr(H(2)O)(2)](2)(mu-OH)(2)][OTf](4) (13), respectively. The solid-state structures of 1-3, 6, and 11-13 have been established by X-ray crystallography. The L(OEt)Ti(IV) complexes can catalyze oxidation of methyl p-tolyl sulfide with tert-butyl hydroperoxide. The bimetallic Ti/ Re complexes 5 and 9 were found to be more active catalysts for the sulfide oxidation than other Ti(IV) complexes presumably because Re alkylperoxo species are involved as the reactive intermediates.  相似文献   

17.
The complex formation of vanadium(IV) with 1,3,5-triamino-1,3,5-trideoxy-cis-inositol (taci) and 1,3,5-trideoxy-1,3,5-tris(dimethylamino)-cis-inositol (tdci) was studied in aqueous solution and in the solid state. The formation constants of [V(IV)O(taci)](2+), [V(IV)O(tdci)](2+), and [V(IV)(tdci)(2)](4+) and of the deprotonation product [V(IV)(tdci)(2)H(-)(1)](3+) were determined (25 degrees C, 0.1 M KNO(3)). Cyclic voltammetry measurements established a reversible one-electron transfer for the [V(IV)(tdci)(2)H(-)(m)]((4)(-)(m))/[V(III)(tdci)(2)H(-)(n)]((3)(-)(n)) couple (0 相似文献   

18.
Reaction of aqueous AgNO(3) with aqueous M(3)[Cr(ox)(3)] in >or=3:1 molar ratio causes the rapid growth of large, cherry-black, light-stable crystals which are not Ag(3)[Cr(ox)(3)], but [M(0.5)(H(2)O)(3)]@[Ag(2.5)Cr(ox)(3)] (ox(2)(-) = oxalate, C(2)O(4)(2)(-); M = Na, K, Cs, Ag, or mixtures of Ag and a group 1 element). The structure of these crystals contains an invariant channeled framework, with composition [[Ag(2.5)Cr(ox)(3)](-)(0.5)]( infinity ), constructed with [Cr(ox)(3)] coordination units linked by Ag atoms through centrosymmetric [Cr-O(2)C(2)O(2)-Ag](2) double bridges. The framework composition [Ag(2.5)Cr(ox)(3)](-)(0.5) occurs because one Ag is located on a 2-fold axis. Within the channels there is a well-defined and ordered set of six water molecules, strongly hydrogen bonded to each other and some of the oxalate O atoms. This invariant channel plus water structure accommodates group 1 cations, and/or Ag cations, in different locations and in variable proportions, but always coordinated by channel water and some oxalate O atoms. The general formulation of these crystals is therefore [M(x)Ag(0.5-x)(H(2)O)(3)]@[Ag(2.5)Cr(ox)(3)]. Five different crystals with this structure are reported, with compositions 1 Ag(0.5)[Ag(2.5)Cr(ox)(3)](H(2)O)(3), 2 Cs(0.19)Ag(0.31)[Ag(2.5)Cr(ox)(3)](H(2)O)(3), 3 K(0.28)Ag(0.22)[Ag(2.5)Cr(ox)(3)](H(2)O)(3), 4 Cs(0.41)Ag(0.09)[Ag(2.5)Cr(ox)(3)](H(2)O)(3), and 5 Cs(0.43)Ag(0.07) [Ag(2.5)Cr(ox)(3)](H(2)O)(3). All crystallize in space group C2/c, with a approximately 18.4, b approximately 14.6, c approximately 12.3 A, beta approximately 113 degrees. Pure Ag(3)[Cr(ox)(3)](H(2)O)(3), which has the same crystal structure (1), was obtained from water by treating Li(3)[Cr(ox)(3)] with excess AgNO(3). Complete dehydration of all of these compounds occurs between 30 and 100 degrees C, with loss of diffraction, but rehydration by exposure to H(2)O(g) at ambient temperature leads to recovery of the original diffraction pattern. In single crystals, this reversible dehydration-hydration occurs without visually evident crystal change, but with loss of mechanical strength. We postulate a general mechanism for transport of water molecules along the channels, associated with local partial collapses of the channel framework, with concomitant bending but little breaking of the host Ag-O and Cr-O bonds, which is readily reversed.  相似文献   

19.
The tetra-n-butylammonium (TBA) salt of [(MeO)TiW(5)O(18)](3-) 1 was reacted with alcohols ROH to give primary, secondary and tertiary alkoxide derivatives [(RO)TiW(5)O(18)](3-) (R = Et 2, (i)Pr 3 and (t)Bu 4), whilst hydrolysis afforded [(mu-O)(TiW(5)O(18))(2)](6-) 5 rather than the hydroxo derivative (R = H). In reactions with (i)PrOH and (t)BuOH, impurity peaks observed at 1015 and 1020 ppm in the (17)O NMR spectra indicate alkoxide degradation and Ti=O bond formation via reactions analogous to those occurring at the surfaces of solid heteropolyacids. Aryloxides [(ArO)TiW(5)O(18)](3-) were prepared by reacting 1 with phenols ArOH (Ar = C(6)H(5) 6, C(6)H(4)Me-4 7, C(6)H(4)(t)Bu-4 8, C(6)H(4)OH-4 9, C(6)H(4)OH-3 10, C(6)H(3)(OH)(2)-3,5 11 and C(6)H(4)CHO-2 13). TiW(5)O(18) units were linked by reacting 1 with 9 to give [(mu-1,4-OC(6)H(4)O)(TiW(5)O(18))(2)](6-) 12. (17)O and (183)W NMR spectra are reported and X-ray crystal structures were obtained for TBA salts of anions 3-10 and 13, which showed that the titanium is six-coordinate in all cases. Reactions were monitored by (1)H NMR, including a 2D-EXSY study of methoxo exchange, and the slow rates observed are probably associated with the reluctance of titanium in these anions to achieve seven-coordination.  相似文献   

20.
A series of novel dinuclear tungsten(IV) oxo complexes with disubstituted 4,4'-R,R-2,2'-bipyridyl (R(2)bpy) ligands of the type [(Cp*W(R(2)bpy)(mu-O))(2)][PF(6)](2) (R=NMe(2), tBu, Me, H, Cl) was prepared by hydrolysis of the tungsten(IV) trichloro complexes [Cp*W(R(2)bpy)Cl(3)]. Cyclic voltammetry measurements for the tungsten(IV) oxo compounds provided evidence for one reversible oxidation and two reversible reductions leading to the oxidation states W(V)W(IV), W(IV)W(III) and W(III)W(III). The corresponding complexes [(Cp*W(R(2)bpy)(mu-O))(2)](n+) [PF(6)](n) (n=0 for R=Me, tBu, and 1, 3 for both R=Me) could be isolated after chemical oxidation/reduction of the tungsten(IV) oxo complexes. The crystal structures of the complexes [(Cp*W(R(2)bpy)(mu-O))(2)][BPh(4)](2) (R=NMe(2), tBu) and [(Cp*W(Me(2)bpy)(mu-O))(2)](n+)[PF(6)](n) (n=0, 1, 2, 3) show a cis geometry with a puckered W(2)O(2) four-membered ring for all compounds except [(Cp*W(Me(2)bpy)(mu-O))(2)] which displays a trans geometry with a planar W(2)O(2) ring. Examining the interaction of these novel tungsten oxo complexes with protons, we were able to show that the W(IV)W(IV) complexes [(Cp*W(R(2)bpy)(mu-O))(2)][PF(6) (-)](2) (R=NMe(2), tBu) undergo reversible protonation, while the W(III)W(III) complexes [(Cp*W(R(2)bpy)(mu-O))(2)] transfer two electrons forming the W(IV)W(IV) complex and molecular hydrogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号