首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 304 毫秒
1.
Approximate analytical models of non-stationary single and double reservoir gas permeability tests with radial flow through hollow cylindrical or hemispherical samples are developed and compared with numerical solutions of full models. The effects of compressibility and slip of gas are included. The approximate solutions are obtained assuming that the total transient mass flux is spatially homogeneous, i.e., it has constant value in direction of flow (along radius in cylindrical or spherical coordinate system). The evolutions of reservoir pressures and transient spatial distributions of pore pressure are determined and apply both for pumping and suction tests. The solutions of full model were obtained with help of the finite element method and served as references to evaluate the approximate models.  相似文献   

2.
页岩中的孔隙直径通常为纳米量级,基于连续流的达西定律已不能描述纳米级孔隙内的气体流动规律,一般采用附加滑移边界条件的Navier-Stokes方程对其进行描述. 由此可导出与压力相关的渗透率公式(称为"视渗透率"),并用来修正达西定律.因而,渗透率修正方法研究成为页岩气流动研究的热点之一.首先,基于Hagen-Poiseuille 流推导出一般形式二阶滑移模型下的速度分布和流量公式,并推导出相应的渗透率修正公式.该渗透率修正公式基本能将现有的滑移速度模型统一表达为对渗透率的修正. 基于一般形式的渗透率修正公式,重点研究了Maxwell, Hsia, Beskok与Ng 滑移模型速度分布渗透率修正系数、及其对井底压力的影响;提出了基于Ng 滑移速度模型的渗透率修正公式. 基于页岩实际储层温压系统及孔隙分布,计算了Kn 范围及储层条件下页岩气的流动形态,表明页岩气流动存在滑移流、过渡流与分子自由流. 而Ng 模型能描述Kn<88 的滑移流、过渡流、自由分子流的流量规律,因此可以用于描述页岩实际储层中页岩气的流动特征. 计算表明,随着Kn 的增加,不同滑移模型下的渗透率修正系数差异增大.Maxwell与Hsia模型适用于滑移流与过渡流早期,Beskok与Ng 模型可描述自由分子流下的流动规律,但二者在虚拟的孔径均为10nm页岩中,井底压力的差别开始显现;在虚拟的孔径均为1nm页岩中,井底压力的差别开始明显.   相似文献   

3.
A theoretically improved model incorporating the relevant mechanisms of gas retention and transport in gas-bearing shale formations is presented for determination of intrinsic gas permeability and diffusivity. This is accomplished by considering the various flow regimes according to a unified Hagen–Poiseuille-type equation, fully compressible treatment of gas and shale properties, and numerical solution of the non-linear pressure equation. The present model can accommodate a wide range of fundamental flow mechanisms, such as continuum, slip, transition, and free molecular flow, depending on the prevailing flow conditions characterized by the Knudsen number. The model indicates that rigorous determination of shale-gas permeability and diffusivity requires the characterization of various important parameters included in the present phenomenological modeling approach, many of which are not considered in previous studies. It is demonstrated that the improved model matches a set of experimental data better than a previous attempt. It is concluded that the improved model provides a more accurate means of analysis and interpretation of the pressure-pulse decay tests than the previous models which inherently consider a Darcian flow and neglect the variation of parameters with pressure.  相似文献   

4.
为了合理预测伴随气泡和气穴的低压液压管路压力瞬态脉动,提出了用改进遗传算法对低压液压管路压力瞬态脉动模型进行参数辨识的新方法.给出了用来描述管路流动特性的瞬态脉动数学模型,建立了用来计算伴随气泡和气穴的液压管路瞬态下气泡体积和气穴体积的数学模型.构造了基于最小二乘法的适应度模型,探讨了遗传操作方式及算法终止准则,采用了算术交叉同线性逼近相结合的改进算术交叉算子进行交叉操作,给出了模型参数寻优的算法流程.实现了对低压液压管路压力瞬态脉动数学模型的参数识别,得到了参数优化后的低压液压管路压力瞬态脉动模型.仿真结果与实验数据的比较表明在低压液压管路瞬态模型中,用改进遗传算法来识别模型中的未知参数的方法是可行的、有效的.  相似文献   

5.
In most of conventional porous media the flow of gas is basically controlled by the permeability and the contribution of gas flow due to gas diffusion is ignored. The diffusion effect may have significant impact on gas flow behavior, especially in low permeability porous media. In this study, a dual mechanism based on Darcy flow as well as diffusion is presented for the gas flow in homogeneous porous media. Then, a novel form of pseudo pressure function was defined. This study presents a set of novel analytical solutions developed for analyzing steady-state and transient gas flow through porous media including effective diffusion. The analytical solutions are obtained using the real gas pseudo pressure function that incorporates the effective diffusion. Furthermore, the conventional assumption was used for linearizing the gas flow equation. As application examples, the new analytical solutions have been used to design new laboratory and field testing method to determine the porous media parameters. The proposed laboratory analysis method is also used to analyze data from steady-state flow tests of three core plugs. Then, permeability (k) and effective diffusion coefficient (D e) was determined; however, the new method allows one to analyze data from both transient and steady-state tests in various flow geometries.  相似文献   

6.
页岩气开发过程中,生产井产出气的组分比例会随时间发生变化.本文基于组分模型数值模拟研究了生产井中甲烷组分比例变化的规律.研究表明,吸附气、渗透率与孔隙度影响页岩气组分比例的瞬态响应特征. 吸附气显著影响组分比例的变化规律,吸附量的大小决定组分比例的变化值及组分比例导数曲线的上下位置. 渗透率影响组分比例初期变化规律,但在后期,不同渗透率对瞬态组分比例规律的影响基本一致.孔隙度对组分比例变化及其导数曲线的影响与吸附气的影响类似,但在生产初期,孔隙度对组分比例的影响要小于吸附气对组分比例的影响. 本文的研究提供了一种进行页岩地层参数评价的新方法.   相似文献   

7.
Low pressure gas percolation characteristic in ultra-low permeability porous media is investigated in this article through core flow experiments. The results show that the wall-slip layer covers more than 10% of the average porous channel radius on account of minimum pore size when the permeability is below 0.1 × 10?3μ m 2 order, and seepage behavior is contrasted to that in mid-high permeability pore media. When the gas pressure is not high enough, the flow regime turns into transitional flow instead of slip flow, and nonlinear relationship between the measured gas permeability and the reciprocal of average pressure exists. The gas measuring permeability experiment would be influenced by the non-linear relationship. If Klinkenberg-corrected method is applied to speculate the equivalent liquid permeability, the extrapolated value will become less or minus. Simultaneously, actual gas flow velocity at the outlet is beyond the calculated value with Klinkenberg formula. A new gas seepage model based on the general slip boundary condition is derived from the homogenization technique in this article. At last the flow model is examined to be suitable for representing the gas flow behavior in ultra-low permeability media and estimating the absolute permeability from single-point, steady-states measurements.  相似文献   

8.
Let us note that the phenomenon of diffusion slip at a constant gas-mixture temperature has been considered in [1], for example, and thermal slip for a single-component gas in [2]. The slip velocity of a binary gas mixture has been calculated in a field of the temperature gradient and of the partial pressure gradients. The kinetic equation is solved by an approximate method based on physical considerations. A formula has been obtained analytically for the slip velocity for arbitrary accommodation coefficients as well as for arbitrary gas concentrations and arbitrary molecule masses. The results agree to 1% accuracy with the numerical computations of other authors.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, pp. 51–55, July–August, 1970.  相似文献   

9.
We present a pore network model to determine the permeability of shale gas matrix. Contrary to the conventional reservoirs, where permeability is only a function of topology and morphology of the pores, the permeability in shale depends on pressure as well. In addition to traditional viscous flow of Hagen–Poiseuille or Darcy type, we included slip flow and Knudsen diffusion in our network model to simulate gas flow in shale systems that contain pores on both micrometer and nanometer scales. This is the first network model in 3D that combines pores with nanometer and micrometer sizes with different flow physics mechanisms on both scales. Our results showed that estimated apparent permeability is significantly higher when the additional physical phenomena are considered, especially at lower pressures and in networks where nanopores dominate. We performed sensitivity analyses on three different network models with equal porosity; constant cross-section model (CCM), enlarged cross-section model (ECM) and shrunk length model (SLM). For the porous systems with variable pore sizes, the apparent permeability is highly dependent on the fraction of nanopores and the pores’ connectivity. The overall permeability in each model decreased as the fraction of nanopores increased.  相似文献   

10.
Shale can act as an unconventional gas reservoir with low permeability and complex seepage characteristics. Study of the apparent permeability and percolation behavior of shale gas is important in understanding the permeability of shale reservoirs, to evaluate formation damage, to develop gas reservoirs, and to design wells. This study simulated methane percolation at 298.15 K under inlet pressures ranging from 0.2 to 4 MPa and a constant outlet pressure of 0.1 MPa to investigate shale gas percolation behavior and apparent permeability. Five representative shale cores from the Carboniferous Hurleg and Huitoutala formations in the eastern Qaidam Basin, China, were analyzed. Each experiment measured the volume flow rate of methane and the inlet pressure. Pseudopressure approach was used to analyze high-velocity flow in shale samples, and apparent permeability at different pressures was calculated using the traditional method. A nonlinear apparent permeability model that considers diffusion and slippage is established from theory and experimental data fitting, and the shale gas flow characteristics affected by slippage and diffusion are analyzed. The results indicate that the pseudopressure formulation that considers the effect of gas properties on high-velocity flow produces a more accurate linear representation of the experimental data. The apparent gas permeability of shale consists of contributions from Darcy permeability, slippage, and diffusion. The apparent permeability and gas flow behavior in the studied shales strongly depended on pressure. The diffusion contribution increased greatly as pressure decreased from 2 to 0.2 MPa, and the smaller the shale permeability, the greater the relative contribution of diffusion flow. At pressures greater than 2 MPa, slip flow contributes \(\sim \)20% of the total flux, Darcy flow contributes up to 70%, and diffusion makes only a minor contribution. This study provides useful information for future studies of the mechanism of shale gas percolation and the exploration and development of Qaidam Basin shale gas specifically.  相似文献   

11.
考虑气体压缩性的多孔材料渗透率和惯性系数的测定   总被引:4,自引:0,他引:4  
李亨  张锡文  何枫 《实验力学》2002,17(3):326-332
多孔介质材料的渗透率和惯性系数是决定多孔介质中流体流动特性的重要参数,一般需要通过实验进行测定,在测定渗透律和惯性系数量,选用气体作为工作介质可以为实验带来极大的方便,然而通常的实验都将气体看作不可压缩流体,直接根据Darcy-Forchheimer定律得到这两个参数,这种近似对实验条件如样品厚度、工作压力等提出了很多要求,本文提出了在考虑气体压缩性的情况下测定渗透率和惯性系数的方法,该方法可以大大降低实验时对样品厚度、工作压力等条件的要求。本文还根据该方法对多孔材料PVF进行了渗透率和惯性系数的测定,并对测量结果进行了验证。  相似文献   

12.
This paper reports experimental results that demonstrate petrophysical and capillary characteristics of compacted salt. The measured data include porosity, gas permeability, pore size distribution, specific surface area, and gas-brine breakthrough and capillary pressure. Salt samples employed in the experiments were prepared by compacting sodium chloride granulates at high stresses for several hours. They represent an intermediate consolidation stage of crushed salt under in-situ conditions. The porosity and permeability of compacted salt showed similar trends to those expected in backfilled regions of waste repositories excavated in salt rock. The correlation between the measured porosity and permeability seems to be independent of the compaction parameters for the range examined in this study. The correlation also shows a different behaviour from that of rock salt. The data of all petrophysical properties show that the pore structure of compacted salt can be better characterized by fracture permeability models rather than capillary bundle ones. Simple creep tests, conducted on the fully-brine-saturated compacted salt samples, yielded similar strain rates to those obtained by a steady-state mechanical model developed from the tests on fully brine-saturated granular salt. A modified procedure is proposed for the evaluation of restored-state capillary pressure data influenced by the material creep. The characteristic parameters for the capillary behaviour of compacted salt are determined by matching the Brooks-Corey and van Genuchten models with the measured data. The Leverett functions determined with different methods agree well.  相似文献   

13.
Draining while mining is an important method for preventing gas outburst and achieving clean energy, and understanding the evolution of the parameters (gas pressure, strain and permeability) during coalbed methane (CBM) drainage while mining is important for improving extraction efficiency (which is very low at present). Physical simulations of CBM drainage were conducted, and the gas pressures were achieved. The values of the permeability and strain could be calculated. The parameters (gas pressure, permeability and strain) trends were achieved during the drainage process. In terms of timing, during the initial stages of CBM drainage, the gas pressures declined quickly, the permeability decreased sharply, and the volumetric strain increased quickly. During the later stages, the gas pressures decreased slowly, the permeability recovered slowly over time, and the volumetric strain increased slowly. In terms of space, the gas pressure declined more quickly nearer the effective borehole. The permeability initially declined more quickly nearer the effective borehole and then increased during the later stages. During CBM drainage in the stress relief region, the volumetric strain of the stress concentration region was the largest. The volumetric strain of the stress relief region was larger than that of original region I, but this trend reversed as time progressed. The volumetric strain of original region II was the smallest. The relationship between the total strains during CBM drainage in different regions was as follows: the total strain during CBM drainage in the stress concentration region > in the stress relief region > in original region I > in original region II.  相似文献   

14.
It is known that the three important parameters, resistivity, capillary pressure, and relative permeability, are all a function of fluid saturation in a porous medium. This implies that there may be a correlation among the three parameters. There have been many papers on the approach to inferring relative permeability from capillary pressure data. However, the literature on the interrelationship between resistivity index, capillary pressure, and relative permeability has been few. The models representing such relationships have been proposed in this study, including a new model correlating relative permeability and capillary pressure. Some of the models were verified using experimental data for the first time. It has been shown that the other two parameters could be determined using these models if one of the three parameters (capillary pressure, relative permeability, and resistivity) is known. Using this approach, it would be possible to quickly obtain a distribution of capillary pressure and relative permeability characteristics as a function of depth and location across an entire reservoir.  相似文献   

15.
基于离散裂缝的多段压裂水平井数值试井模型及应用   总被引:2,自引:0,他引:2  
水平井压裂技术已经成为开发低渗透油气藏、页岩气藏和致密气场等非常规油气藏的关键技术。基于离散裂缝模型,对裂缝进行简化,建立了二维多段压裂水平井有限导流数值试井模型,利用有限元方法求解模型,获得多段压裂水平井试井理论曲线和压力场特征。分析表明:多段压裂水平井的试井理论曲线一共分为七个阶段:井筒储存段、裂缝线性流段、裂缝-地层双线性流段、裂缝干扰段、地层线性流段、系统径向流段和边界作用段,其中裂缝-地层双线性流段和裂缝干扰是其典型特征。分析了裂缝数量、裂缝间距、裂缝不对称、裂缝不等长和裂缝部分缺失等因素对试井理论曲线的影响,结果表明:裂缝数量和裂缝间距对试井理论曲线的影响最大。较多的裂缝、较大裂缝间距、对称的裂缝和等长的裂缝有利于降低压裂水平井井底的流动阻力,提高产能。将建立的数值试井模型应用于四川盆地一口多段压裂水平井的压力恢复测试的数值试井解释,结果表明:本文建立的模型可以较好的拟合压力恢复测试数据,可以获得裂缝的导流能力和裂缝长度,为压裂效果评价和压裂设计提供指导。   相似文献   

16.
In tight gas reservoirs, permeability is pressure dependent owing to pore pressure reduction during the life of the reservoir. Empirical models are commonly used to describe pressure-dependent permeability. In this paper, it was discussed a number of issues which centered around tight sandstone pressure-dependent permeability experiment, first to apply core aging on permeability test and then to develop a new semi-analytical model to predict permeability. In tight sandstone permeability test experiment, the microinterstice between core and sleeves resulted in over estimation of dependency of permeability on pressure. Then, a new semi-analytical model was developed to identify the relation between permeability and fluid pressure in tight sandstone, which indicates there is a linear relation between pore pressure changes and the inverse of permeability to a constant power. Pressure-dependent permeability of 8 tight sandstone core samples from Ordos Basin, China, was obtained using the modified procedure, and results were perfectly matched with the proposed model. Meanwhile, the semi-analytical model was also verified by pressure-dependent permeability of 16 cores in the literature and experiment results of these 24 cores were matched by empirical models and the semi-analytical model. Compared with regression result of commonly used empirical models, the semi-analytical model outperforms the current empirical models on 8 cores from our experiment and 16 cores from the literature. The model verification also indicates that the semi-theoretical model can match the pressure-dependent permeability of different rock types. In addition, the permeability performance under reservoir condition is discussed, which is divided into two stages. In most tight gas reservoirs, the permeability performance during production is located in stage II. The evaluation result with proposed experiment procedure and the stress condition in stage II will reduce permeability sensitivity to stress.  相似文献   

17.
宋文辉  姚军  张凯 《力学学报》2021,53(8):2179-2192
页岩储层孔隙结构复杂, 气体赋存方式多样. 有机质孔隙形状对受限空间气体吸附和流动规律的影响尚不明确, 导致难以准确认识页岩气藏气体渗流机理. 为解决该问题, 本文首先采用巨正则蒙特卡洛方法模拟气体在不同形状有机质孔隙(圆形孔隙、狭长孔隙、三角形孔隙、方形孔隙)内吸附过程, 发现不同形状孔隙内吸附规律符合朗格缪尔单层吸附规律, 分析了绝对吸附量、过剩吸附浓量、气体吸附参数随孔隙尺寸、压力的变化, 研究了孔隙形状对气体吸附的影响. 在明确不同形状有机质孔隙内气体热力学吸附规律基础上, 建立不同形状有机质孔隙内吸附气表面扩散数学模型和考虑滑脱效应的自由气流动数学模型, 结合分子吸附模拟结果研究了不同孔隙形状、孔隙尺寸有机质孔隙内吸附气流动与自由气流动对气体渗透率的贡献. 结果表明, 狭长孔隙内最大吸附浓度和朗格缪尔压力最高, 吸附气表面扩散能力最弱. 孔隙半径5 nm以上时, 吸附气表面扩散对气体渗透率影响可忽略. 本文研究揭示了页岩气藏实际生产过程中有机质孔隙形状对页岩气吸附和流动能力的影响机制.   相似文献   

18.
The present investigation deals with a theoretical study of the peristaltic hemodynamic flow of couple-stress fluids through a porous medium under the influence of wall slip condition. This study is motivated towards the physiological flow of blood in the micro-circulatory system, by taking account of the particle size effect. Reynolds number is small enough and the wavelength to diameter ratio is large enough to negate inertial effects. Analytical solutions for axial velocity, pressure gradient, frictional force, stream function and mechanical efficiency are obtained. Effects of different physical parameters reflecting couple-stress parameter, permeability parameter, slip parameter, as well as amplitude ratio on pumping characteristics and frictional force, streamlines pattern and trapping of peristaltic flow pattern are studied with particular emphasis. The computational results are presented in graphical form. This study puts forward an important observation that pressure reduces by increasing the magnitude of couple-stress parameter, permeability parameter, slip parameter, whereas it enhances by increasing the amplitude ratio.  相似文献   

19.
Zhang  Yongchao  Zeng  Jianhui  Cai  Jianchao  Feng  Sen  Feng  Xiao  Qiao  Juncheng 《Transport in Porous Media》2019,126(3):633-653

Shale reservoirs are characterized by very low permeability in the scale of nano-Darcy. This is due to the nanometer scale of pores and throats in shale reservoirs, which causes a difference in flow behavior from conventional reservoirs. Slip flow is considered to be one of the main flow regimes affecting the flow behavior in shale gas reservoirs and has been widely studied in the literature. However, the important mechanism of gas desorption or adsorption that happens in shale reservoirs has not been investigated thoroughly in the literature. This paper aims to study slip flow together with gas desorption in shale gas reservoirs using pore network modeling. To do so, the compressible Stokes equation with proper boundary conditions was applied to model gas flow in a pore network that properly represents the pore size distribution of typical shale reservoirs. A pore network model was created using the digitized image of a thin section of a Berea sandstone and scaled down to represent the pore size range of shale reservoirs. Based on the size of pores in the network and the pore pressure applied, the Knudsen number which controls the flow regimes was within the slip flow regime range. Compressible Stokes equation with proper boundary conditions at the pore’s walls was applied to model the gas flow. The desorption mechanism was also included through a boundary condition by deriving a velocity term using Langmuir-type isotherm. It was observed that when the slip flow was activated together with desorption in the model, their contributions were not summative. That, is the slippage effect limited the desorption mechanism through a reduction of pressure drop. Eagle Ford and Barnett shale samples were investigated in this study when the measured adsorption isotherm data from the literature were used. Barnett sample showed larger contribution of gas desorption toward gas recovery as compared to Eagle Ford sample. This paper has produced a pore network model to further understand the gas desorption and the slip flow effects in recovery of shale gas reservoirs.

  相似文献   

20.
变形双重介质广义流动分析   总被引:21,自引:0,他引:21  
对于碳酸盐油藏和低渗油藏的渗流问题,传统的研究方法都是假设地层渗透率是常数,这假设,对于地层渗透率是压力敏感的情况,对压力的空间变化和瞬时变化将导致较大的误差。本文研究了应力敏感地层中双重介质渗流问题的压力不稳定响应,不仅考虑了储层的双重介质特征,而且考虑了应力敏感地层中介质的变形,建立了应力敏感地层双重介质的数学模型,渗透率依赖于孔隙压力变化的流动方程是强非线性的,采用Douglas-Jones预估-校正法获得了只有裂缝发生形变定产量生产时无限大地层的数值解及定产量生产岩块与裂隙同时发生形变时无限大地层的数值解,并探讨了变形参数和双重介质参数变化时压力的变化规律,给出几种情况下典型压力曲线图版,这些结果可用于实际试井分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号