首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Let G be a graph. For each vertex vV(G), Nv denotes the subgraph induces by the vertices adjacent to v in G. The graph G is locally k‐edge‐connected if for each vertex vV(G), Nv is k‐edge‐connected. In this paper we study the existence of nowhere‐zero 3‐flows in locally k‐edge‐connected graphs. In particular, we show that every 2‐edge‐connected, locally 3‐edge‐connected graph admits a nowhere‐zero 3‐flow. This result is best possible in the sense that there exists an infinite family of 2‐edge‐connected, locally 2‐edge‐connected graphs each of which does not have a 3‐NZF. © 2003 Wiley Periodicals, Inc. J Graph Theory 42: 211–219, 2003  相似文献   

2.
Let G be a connected k–regular bipartite graph with bipartition V(G) = XY and adjacency matrix A. We say G is det‐extremal if per (A) = |det(A)|. Det–extremal k–regular bipartite graphs exist only for k = 2 or 3. McCuaig has characterized the det‐extremal 3‐connected cubic bipartite graphs. We extend McCuaig's result by determining the structure of det‐extremal cubic bipartite graphs of connectivity two. We use our results to determine which numbers can occur as orders of det‐extremal connected cubic bipartite graphs, thus solving a problem due to H. Gropp. © 2003 Wiley Periodicals, Inc. J Graph Theory 44: 50–64, 2003  相似文献   

3.
For an integer l > 1, the l‐edge‐connectivity of a connected graph with at least l vertices is the smallest number of edges whose removal results in a graph with l components. A connected graph G is (k, l)‐edge‐connected if the l‐edge‐connectivity of G is at least k. In this paper, we present a structural characterization of minimally (k, k)‐edge‐connected graphs. As a result, former characterizations of minimally (2, 2)‐edge‐connected graphs in [J of Graph Theory 3 (1979), 15–22] are extended. © 2003 Wiley Periodicals, Inc. J Graph Theory 44: 116–131, 2003  相似文献   

4.
A face of an edge‐colored plane graph is called rainbow if the number of colors used on its edges is equal to its size. The maximum number of colors used in an edge coloring of a connected plane graph Gwith no rainbow face is called the edge‐rainbowness of G. In this paper we prove that the edge‐rainbowness of Gequals the maximum number of edges of a connected bridge face factor H of G, where a bridge face factor H of a plane graph Gis a spanning subgraph H of Gin which every face is incident with a bridge and the interior of any one face fF(G) is a subset of the interior of some face f′∈F(H). We also show upper and lower bounds on the edge‐rainbowness of graphs based on edge connectivity, girth of the dual graphs, and other basic graph invariants. Moreover, we present infinite classes of graphs where these equalities are attained. © 2009 Wiley Periodicals, Inc. J Graph Theory 62: 84–99, 2009  相似文献   

5.
In the edge precoloring extension problem, we are given a graph with some of the edges having preassigned colors and it has to be decided whether this coloring can be extended to a proper k‐edge‐coloring of the graph. In list edge coloring every edge has a list of admissible colors, and the question is whether there is a proper edge coloring where every edge receives a color from its list. We show that both problems are NP‐complete on (a) planar 3‐regular bipartite graphs, (b) bipartite outerplanar graphs, and (c) bipartite series‐parallel graphs. This improves previous results of Easton and Parker 6 , and Fiala 8 . © 2005 Wiley Periodicals, Inc. J Graph Theory 49: 313–324, 2005  相似文献   

6.
A set S of edge‐disjoint hamilton cycles in a graph G is said to be maximal if the edges in the hamilton cycles in S induce a subgraph H of G such that G ? E(H) contains no hamilton cycles. In this context, the spectrum S(G) of a graph G is the set of integers m such that G contains a maximal set of m edge‐disjoint hamilton cycles. This spectrum has previously been determined for all complete graphs and for all complete bipartite graphs. In this paper, we extend these results to the complete multipartite graphs. © 2003 Wiley Periodicals, Inc. J Graph Theory 43: 49–66, 2003  相似文献   

7.
For any graph H, let Forb*(H) be the class of graphs with no induced subdivision of H. It was conjectured in [J Graph Theory, 24 (1997), 297–311] that, for every graph H, there is a function fH: ?→? such that for every graph G∈Forb*(H), χ(G)≤fH(ω(G)). We prove this conjecture for several graphs H, namely the paw (a triangle with a pendant edge), the bull (a triangle with two vertex‐disjoint pendant edges), and what we call a “necklace,” that is, a graph obtained from a path by choosing a matching such that no edge of the matching is incident with an endpoint of the path, and for each edge of the matching, adding a vertex adjacent to the ends of this edge. © 2011 Wiley Periodicals, Inc. J Graph Theory 71:49–68, 2012  相似文献   

8.
A graph is vertex?transitive or symmetric if its automorphism group acts transitively on vertices or ordered adjacent pairs of vertices of the graph, respectively. Let G be a finite group and S a subset of G such that 1?S and S={s?1 | sS}. The Cayleygraph Cay(G, S) on G with respect to S is defined as the graph with vertex set G and edge set {{g, sg} | gG, sS}. Feng and Kwak [J Combin Theory B 97 (2007), 627–646; J Austral Math Soc 81 (2006), 153–164] classified all cubic symmetric graphs of order 4p or 2p2 and in this article we classify all cubic symmetric graphs of order 2pq, where p and q are distinct odd primes. Furthermore, a classification of all cubic vertex‐transitive non‐Cayley graphs of order 2pq, which were investigated extensively in the literature, is given. As a result, among others, a classification of cubic vertex‐transitive graphs of order 2pq can be deduced. © 2010 Wiley Periodicals, Inc. J Graph Theory 65: 285–302, 2010  相似文献   

9.
A graph G = (V, E) is called (k, k′)‐total weight choosable if the following holds: For any total list assignment L which assigns to each vertex x a set L(x) of k real numbers, and assigns to each edge e a set L(e) of k′ real numbers, there is a mapping f: VE→? such that f(y)∈L(y) for any yVEand for any two adjacent vertices x, x′, . We conjecture that every graph is (2, 2)‐total weight choosable and every graph without isolated edges is (1, 3)‐total weight choosable. It follows from results in [7] that complete graphs, complete bipartite graphs, trees other than K2 are (1, 3)‐total weight choosable. Also a graph G obtained from an arbitrary graph H by subdividing each edge with at least three vertices is (1, 3)‐total weight choosable. This article proves that complete graphs, trees, generalized theta graphs are (2, 2)‐total weight choosable. We also prove that for any graph H, a graph G obtained from H by subdividing each edge with at least two vertices is (2, 2)‐total weight choosable as well as (1, 3)‐total weight choosable. © 2010 Wiley Periodicals, Inc. J Graph Theory 66:198‐212, 2011  相似文献   

10.
The odd edge connectivity of a graph G, denoted by λo(G), is the size of a smallest odd edge cut of the graph. Let S be any given surface and ? be a positive real number. We proved that there is a function fS(?) (depends on the surface S and lim?→0 fS(?)=∞) such that any graph G embedded in S with the odd‐edge connectivity at least fS(?) admits a nowhere‐zero circular (2+?)‐flow. Another major result of the work is a new vertex splitting lemma which maintains the old edge connectivity and graph embedding. © 2002 Wiley Periodicals, Inc. J Graph Theory 40: 147–161, 2002  相似文献   

11.
For a graph G we define a graph T(G) whose vertices are the triangles in G and two vertices of T(G) are adjacent if their corresponding triangles in G share an edge. Kawarabayashi showed that if G is a k‐connected graph and T(G) contains no edge, then G admits a k‐contractible clique of size at most 3, generalizing an earlier result of Thomassen. In this paper, we further generalize Kawarabayashi's result by showing that if G is k‐connected and the maximum degree of T(G) is at most 1, then G admits a k‐contractible clique of size at most 3 or there exist independent edges e and f of G such that e and f are contained in triangles sharing an edge and G/e/f is k‐connected. © 2006 Wiley Periodicals, Inc. J Graph Theory 55: 121–136, 2007  相似文献   

12.
Chung defined a pebbling move on a graph G to be the removal of two pebbles from one vertex and the addition of one pebble to an adjacent vertex. The pebbling number of a connected graph is the smallest number f(G) such that any distribution of f(G) pebbles on G allows one pebble to be moved to any specified, but arbitrary vertex by a sequence of pebbling moves. Graham conjectured that for any connected graphs G and H, f(G×H)≤ f(G)f(H). We prove Graham's conjecture when G is a cycle for a variety of graphs H, including all cycles. © 2002 Wiley Periodicals, Inc. J Graph Theory 42: 141–154, 2003  相似文献   

13.
An edge‐labeling f of a graph G is an injection from E(G) to the set of integers. The edge‐bandwidth of G is B′(G) = minf {B′(f)} where B′(f) is the maximum difference between labels of incident edges of G. The theta graph Θ(l1,…,lm) is the graph consisting of m pairwise internally disjoint paths with common endpoints and lengths l1 ≤ ··· ≤ lm. We determine the edge‐bandwidth of all theta graphs. © 2000 John Wiley & Sons, Inc. J Graph Theory 35: 89–98, 2000  相似文献   

14.
A kweak bisection of a cubic graph G is a partition of the vertex‐set of G into two parts V1 and V2 of equal size, such that each connected component of the subgraph of G induced by () is a tree of at most vertices. This notion can be viewed as a relaxed version of nowhere‐zero flows, as it directly follows from old results of Jaeger that every cubic graph G with a circular nowhere‐zero r‐flow has a ‐weak bisection. In this article, we study problems related to the existence of k‐weak bisections. We believe that every cubic graph that has a perfect matching, other than the Petersen graph, admits a 4‐weak bisection and we present a family of cubic graphs with no perfect matching that do not admit such a bisection. The main result of this article is that every cubic graph admits a 5‐weak bisection. When restricted to bridgeless graphs, that result would be a consequence of the assertion of the 5‐flow Conjecture and as such it can be considered a (very small) step toward proving that assertion. However, the harder part of our proof focuses on graphs that do contain bridges.  相似文献   

15.
Let G be a Class 1 graph with maximum degree 4 and let be an integer. We show that any proper t‐edge coloring of G can be transformed to any proper 4‐edge coloring of G using only transformations on 2‐colored subgraphs (so‐called interchanges). This settles the smallest previously unsolved case of a well‐known problem of Vizing on interchanges, posed in 1965. Using our result we give an affirmative answer to a question of Mohar for two classes of graphs: we show that all proper 5‐edge colorings of a Class 1 graph with maximum degree 4 are Kempe equivalent, that is, can be transformed to each other by interchanges, and that all proper 7‐edge colorings of a Class 2 graph with maximum degree 5 are Kempe equivalent.  相似文献   

16.
Given graphs G, H, and lists L(v) ? V(H), v ε V(G), a list homomorphism of G to H with respect to the lists L is a mapping f : V(G) → V(H) such that uv ε E(G) implies f(u)f(v) ε E(H), and f(v) ε L(v) for all v ε V(G). The list homomorphism problem for a fixed graph H asks whether or not an input graph G, together with lists L(v) ? V(H), v ε V(G), admits a list homomorphism with respect to L. In two earlier papers, we classified the complexity of the list homomorphism problem in two important special cases: When H is a reflexive graph (every vertex has a loop), the problem is polynomial time solvable if H is an interval graph, and is NP‐complete otherwise. When H is an irreflexive graph (no vertex has a loop), the problem is polynomial time solvable if H is bipartite and H is a circular arc graph, and is NP‐complete otherwise. In this paper, we extend these classifications to arbitrary graphs H (each vertex may or may not have a loop). We introduce a new class of graphs, called bi‐arc graphs, which contains both reflexive interval graphs (and no other reflexive graphs), and bipartite graphs with circular arc complements (and no other irreflexive graphs). We show that the problem is polynomial time solvable when H is a bi‐arc graph, and is NP‐complete otherwise. In the case when H is a tree (with loops allowed), we give a simpler algorithm based on a structural characterization. © 2002 Wiley Periodicals, Inc. J Graph Theory 42: 61–80, 2003  相似文献   

17.
The restricted‐edge‐connectivity of a graph G, denoted by λ′(G), is defined as the minimum cardinality over all edge‐cuts S of G, where GS contains no isolated vertices. The graph G is called λ′‐optimal, if λ′(G) = ξ(G), where ξ(G) is the minimum edge‐degree in G. A graph is super‐edge‐connected, if every minimum edge‐cut consists of edges adjacent to a vertex of minimum degree. In this paper, we present sufficient conditions for arbitrary, triangle‐free, and bipartite graphs to be λ′‐optimal, as well as conditions depending on the clique number. These conditions imply super‐edge‐connectivity, if δ (G) ≥ 3, and the equality of edge‐connectivity and minimum degree. Different examples will show that these conditions are best possible and independent of other results in this area. © 2005 Wiley Periodicals, Inc. J Graph Theory 48: 228–246, 2005  相似文献   

18.
A well‐known result of Tutte states that a 3‐connected graph G is planar if and only if every edge of G is contained in exactly two induced non‐separating circuits. Bixby and Cunningham generalized Tutte's result to binary matroids. We generalize both of these results and give new characterizations of both 3‐connected planar graphs and 3‐connected graphic matroids. Our main result determines when a natural necessary condition for a binary matroid to be graphic is also sufficient. © 2009 Wiley Periodicals, Inc. J Graph Theory 64: 165–174, 2010  相似文献   

19.
We show that the edge set of a bridgeless cubic graph G can be covered with circuits such that the sum of the lengths of the circuits is at most |E(G)|. Stronger results are obtained for cubic graphs of large girth.  相似文献   

20.
Let G = (V,E) be a graph or digraph and r : VZ+. An r‐detachment of G is a graph H obtained by ‘splitting’ each vertex ν ∈ V into r(ν) vertices. The vertices ν1,…,νr(ν) obtained by splitting ν are called the pieces of ν in H. Every edge uν ∈ E corresponds to an edge of H connecting some piece of u to some piece of ν. Crispin Nash‐Williams 9 gave necessary and sufficient conditions for a graph to have a k‐edge‐connected r‐detachment. He also solved the version where the degrees of all the pieces are specified. In this paper, we solve the same problems for directed graphs. We also give a simple and self‐contained new proof for the undirected result. © 2003 Wiley Periodicals, Inc. J Graph Theory 43: 67–77, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号