首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The system constants of the solvation parameter model are used to prepare system maps for the retention of small neutral compounds on an octylsiloxane-bonded (Kinetex C8) and diisobutyloctadecylsiloxane-bonded (Kinetex XB-C18) superficially porous silica stationary phases for aqueous mobile phases containing 10–70% (v/v) methanol or acetonitrile. Electrostatic interactions (cation-exchange) are important for the retention of weak bases with acetonitrile–water but not for methanol–water mobile phases. Compared with an octadecylsiloxane-bonded silica stationary phase (Kinetex C18) retention is reduced due to a less favorable phase ratio for both the octylsiloxane-bonded and diisobutyloctadecylsiloxane-bonded silica stationary phases while selectivity differences are small and solvent dependent. Selectivity differences for neutral compounds are larger for methanol–water but significantly suppressed for acetonitrile–water mobile phases. The selectivity differences arise from small changes in all system constants with solute size and hydrogen-bond basicity being the most important due to their dominant contribution to the retention mechanism. Exchanging the octadecylsiloxane-bonded silica column for either the octylsiloxane-bonded or diisobutyloctadecylsiloxane-bonded silica column affords little scope for extending the selectivity space and is restricted to fine tuning of separations, and in some cases, to obtain faster separations due to a more favorable phase ratio. For weak bases larger differences in relative retention are expected with acetonitrile–water mobile phases on account of the additional cation exchange interactions possible that are absent for the octadecylsiloxane-bonded silica stationary phase.  相似文献   

2.
锆胶基质阳离子色谱柱填料的制备   总被引:1,自引:0,他引:1  
夏炎  杨万龙  左育民 《分析化学》2006,34(4):511-513
以10μm锆胶微球包覆聚苯乙烯制成强酸、弱酸型的阳离子色谱柱填料,具有良好的色谱性能。使用D ionex-120型双柱离子色谱仪,较好地分离碱金属、碱土金属离子及铵离子,比较了不同交换基团对溶质保留的影响。由于锆胶基质具有高的化学稳定性和机械强度,用作离子色谱柱填料有良好的应用前景。  相似文献   

3.
Summary Silica-bonded stationary phases were developed for the separation of nucleic acid constituents and their properties investigated with homologous oligoriboadenylic acids in electrostatic interaction chromatography and with alkylbenzenes in reversed-phase chromatography. Analysis of retention data confirmed the stratified molecular structure of the surface which consist of a layer of propyl chains anchoredvia siloxane bridges to the silica surface proper and of polar moieties attached to the hydrocarbonaceous functions. The polar top layer contains weak cationic and/or hydrophobic binding sites, is strongly hydrated in contact with aqueous eluents and bars the access by large biopolymers to the hydrocarbonaceous sublayer. In reversed-phase chromatography of small non polar molecules with hydro-organic eluents, however, this layer is accessible and engenders a retentive behavior typical for weak hydro-carbonaceous bonded phases. As a result the stationary phases, depending on the nature of the sample and the mobile phase, exhibit the properties of "soft" phases for the chromatography of biopolymers under mild elution conditions and those of "hard" phases for the separation of small non-polar molecules under conditions generally employed in reversed-phase chromatography. The retention of nucleic acid constituents on most of the stationary phases investigated subject to a dual mechanism as a result of the interplay of electrostatic and hydrophobic interactions between the eluites and the binding sites on the stationary phase surface. Siliceous stationary phases having surface morphology described above are suitable for the separation of nucleic acid constituents having widely ranging molecular weights up to 3 × 106 Daltons provided the support has appropriate pore dimensions. This is demonstrated by the separation of mixtures arising from digesting t-RNApha or polyadenylic acids as well as those of ribosomal RNA’s and different forms of the plasmid pBR322 DNA. Presented at the 15th International Symposium on Chromatography, Nürnberg, October 1984  相似文献   

4.
Polar columns used in the HILIC (Hydrophilic Interaction Liquid Chromatography) systems take up water from the mixed aqueous–organic mobile phases in excess of the water concentration in the bulk mobile phase. The adsorbed water forms a diffuse layer, which becomes a part of the HILIC stationary phase and plays dominant role in the retention of polar compounds. It is difficult to fix the exact boundary between the diffuse stationary and the bulk mobile phase, hence determining the column hold-up volume is subject to errors. Adopting a convention that presumes that the volume of the adsorbed water can be understood as the column stationary phase volume enables unambiguous determination of the volumes of the stationary and of the mobile phases in the column, which is necessary for obtaining thermodynamically correct chromatographic data in HILIC systems. The volume of the aqueous stationary phase, Vex, can be determined experimentally by frontal analysis combined with Karl Fischer titration method, yielding isotherms of water adsorbed on polar columns, which allow direct prediction of the effects of the composition of aqueous–organic mobile phase on the retention in HILIC systems, and more accurate determination of phase volumes in columns and consistent retention data for any mobile phase composition. The n phase volume ratios of 18 columns calculated according to the new phase convention strongly depend on the type of the polar column. Zwitterionic and TSK gel amide and amine columns show especially strong water adsorption.  相似文献   

5.
Tert‐butylcarbamoyl‐quinine and ‐quinidine weak anion‐exchange chiral stationary phases (Chiralpak® QN‐AX and QD‐AX) have been applied for the separation of sodium β‐ketosulfonates, such as sodium chalconesulfonates and derivatives thereof. The influence of type and amount of co‐ and counterions on retention and enantioresolution was investigated using polar organic mobile phases. Both columns exhibited remarkable enantiodiscrimination properties for the investigated test solutes, in which the quinidine‐based column showed better enantioselectivity and slightly stronger retention for all analytes compared to the quinine‐derived chiral stationary phase. With an optimized mobile phase (MeOH, 50 mM HOAc, 25 mM NH3), 12 of 13 chiral sulfonates could be baseline separated within 8 min using the quinidine‐derivatized column. Furthermore, subcritical fluid chromatography (SubFC) mode with a CO2‐based mobile phase using a buffered methanolic modifier was compared to HPLC. Generally, SubFC exhibited slightly inferior enantioselectivities and lower elution power but also provided unique baseline resolution for one compound.  相似文献   

6.
Electrostatic ion chromatography, also known as zwitterionic ion chromatography, has been predominantly used for the analysis of anions. Consequently, separation mechanisms proposed for this technique have been based on anion retention data obtained using a sulfobetaine-type surfactant-coated column. A comprehensive cation retention data set has been obtained on a C18 column coated with the zwitterionic surfactant N-tetradecylphosphocholine (which has the negatively and positively charged functional groups reversed in comparison to the sulfobetaine surfactants), with mobile phases being varied systematically in the concentration and species of both the mobile-phase anion and cation. A retention mechanism based on both an ion exclusion effect and a direct (chaotropic) interaction with the inner negative charge on the zwitterion is proposed for the retention of cations. Despite the relatively low chaotropic nature of cations compared with anions, the retention data shows that cations are retained in this system predominantly due to a chaotropic interaction with the inner charge, analogous to anions in a system where the C18 column is coated with a sulfobetaine-type surfactant. The retention of an analyte cation, and the effect of the mobile-phase anion and cation, can be predicted by the relative positions of these species on the Hofmeister (chaotropic) series.  相似文献   

7.
Ion chromatography (IC) has gradually developed into a preferred method for the determination of inorganic anions. And in recent years some low molecular aliphatic acid can be also separated in the ion exchange column with the development of stationary phase. But for the determination of aromatic ionic compounds there are some problems. The aromatic anions show enhanced retention due to interaction with the π electrons of the aromatic backbone. Although the addition of an organic modifier can alleviate the difficulty, it is not the ultimate solution. IonPac AS20 column was developed using a unique polymer bonding technology and its substrate coating is aliphatic backbone. The polymer is completely free of any π electron‐containing substituents in the AS20 column. In this paper, the retention behavior of aromatic carboxylic and sulfonic acid on two hydroxide‐selective columns, IonPac AS11‐HC, AS16, and the new column AS20 was also studied. The result showed that the retentions of ten compounds on three columns were different with each other because of their different column characteristics. Among them 4‐chlorobenzene sulfonic acid, 3,5‐dihydric benzoic acid and salicylic acid obviously exhibited the weakest retention on the IonPac AS20. It was showed that π‐π bond function between anion and stationary phases was weakened in AS20 column because its polymer was completely free of any π electron‐containing substituents. So in this paper the AS20 was selected as an analytical column to separate ten aromatic ionic compounds, fumaric acid with conjugate bond included. The retention behavior, separation of the ten compounds and effect of temperature on their retention in the anion‐exchange column AS20 (2 mm) were studied. The result showed that those compounds could be separated with each other when running in gradient program and the organic modifier was unnecessary during the separation. So it is showed that AS20 column can be used as a separating column because its polymer is completely free of any π electron‐containing substituents. Finally, the effect of temperature on the retention behavior in AS20 column was studied and it was showed that the retention of nine compounds exhibited endothermic behavior.  相似文献   

8.
Adopting a stationary phase convention circumvents problematic definition of the boundary between the stationary and the mobile phase in the liquid chromatography, resulting in thermodynamically consistent and reproducible chromatographic data. Three stationary phase definition conventions provide different retention data, but equal selectivity: (i) the complete solid phase moiety; (ii) the solid porous part carrying the active interaction centers; (iii) the volume of the inner column pores. The selective uptake of water from the bulk aqueous‐organic mobile phase significantly affects the volume and the properties of polar stationary phases. Some polar stationary phases provide dual‐mode retention mechanism in aqueous‐organic mobile phases, reversed‐phase in the water‐rich range, and normal‐phase at high concentrations of the organic solvent in water. The linear solvation energy relationship model characterizes the structural contributions of the non‐selective and selective polar interactions both in the water‐rich and organic solvent‐rich mobile phases. The inner‐pore convention provides a single hold‐up volume value for the retention prediction on the dual‐mode columns over the full mobile phase range. Using the dual‐mode monolithic polymethacrylate zwitterionic micro‐columns alternatively in each mode in the first dimension of two‐dimensional liquid chromatography, in combination with a short reversed‐phase column in the second dimension, provides enhanced sample information.  相似文献   

9.
The system constants of the solvation parameter model are used to prepare system maps for the retention of small neutral compounds on phenylhexylsiloxane- and pentafluorophenylpropylsiloxane-bonded superficially porous silica stationary phases (Kinetex Phenyl-Hexyl and Kinetex F5) for aqueous mobile phases containing 10–70% (v/v) methanol or acetonitrile. Electrostatic interactions (cation exchange) are important for the retention of weak bases for acetonitrile–water mobile phases, but virtually absent for the same compounds for methanol–water mobile phases. The selectivity of the Kinetex Phenyl-Hexyl stationary phase for small neutral compounds is similar to an octadecylsiloxane-bonded silica stationary phase with similar morphology Kinetex C-18 for both methanol–water and acetonitrile–water mobile phase compositions. The Kinetex Phenyl-Hexyl and XBridge Phenyl stationary phases with the same topology but different morphology are selectivity equivalent, confirming that solvation of the interphase region can be effective at dampening selectivity differences for modern stationary phases. Small selectivity differences observed for XTerra Phenyl (different morphology and topology) confirm previous reports that the length and type of space arm for phenylalkylsiloxane-bonded silica stationary phases can result in small changes in selectivity. The pentafluorophenylpropylsiloxane-bonded silica stationary phase (Kinetex F5) has similar separation properties to the phenylhexylsiloxane-bonded silica stationary phases, but is not selectivity equivalent. However, for method development purposes, the scope to vary separations from an octadecylsiloxane-bonded silica stationary phase (Kinetex C-18) to “phenyl phase” of the types studied here is limited for small neutral compounds. In addition, selectivity differences for the above stationary phases are enhanced by methanol–water and largely suppressed by acetonitrile–water mobile phases. For bases, larger selectivity differences are possible for the above stationary phases if electrostatic interactions are exploited, especially for acetonitrile-containing mobile phases.  相似文献   

10.
Abstract

Alkyl-modified silica (RSi) and polystyrenedivinylbenzene (PRP-1) stationary phases are compared for the chromatographic separation of inorganic analyte anions and cations using hydro-phobic ions of opposite charge as mobile phase additives. Tetra-alkylammonium salts were used for anion separations and alkyl sulfonate salts for cation separations. Two major equilibria influence the retention of analyte ions on PRP-1. These are: retention of the hydrophobic ion on PRP-1 and an ion exchange selectivity between the hydrophobic counterion and the analyte ion. When using RSi retention is also influenced by ion exchange at residual silanol groups, which act as weak cation exchange sites. Mobile and stationary phase variables that influence analyte retention are identified. Optimization of these provides favorable eluting conditions for the separation of inorganic ionic analytes. Of particular interest is the potential use of PRP-1 and RSi columns for the separation of inorganic cations; conditions for the separation of alkali metals and alkaline earths are discussed.  相似文献   

11.
单柱离子色谱法测定一价阳离子的流动相研究   总被引:1,自引:0,他引:1  
对单柱离子色谱法测定一价阳离子的流动相进行了系统研究,阐述了一价阳离子的保留行为和电导检测行为与流动相之间的关系,分别对无机酸(硝酸)、有机酸(柠檬酸)和芳香碱(苯胺)为流动相测定一价阳离子进行了讨论,其中有机酸和无机酸是较为适宜的流动相。  相似文献   

12.
《Electrophoresis》2018,39(16):2144-2151
The chromatographic behavior of new biogenic purine nucleosides in hydrophilic interaction liquid chromatography was examined on three different stationary phases, namely bare silica, and amide‐ and cyclofructan‐based stationary phases. The effects of buffer concentration, pH and acetonitrile‐to‐aqueous‐part ratio in the mobile phase on retention and peak shape were assessed. The retention coefficients and peak symmetry values substantially differed with respect to analytes´ structures, stationary phase properties and mobile phase composition. The bare silica column was unsuitable for these compounds under the chromatographic conditions tested due to very broad and asymmetrical peaks. Furthermore, the cyclofructan‐based stationary phase provided almost Gaussian peak shapes of all deazapurine nucleosides under most conditions tested. Therefore, the cyclofructan‐based stationary phase is the most suitable choice for the chromatographic analysis of nucleosides.  相似文献   

13.
Li Y  Li J  Chen T  Liu X  Zhang H 《Journal of chromatography. A》2011,1218(11):1503-1508
The mixed sulfated/methacryloyl polysaccharide derivative was prepared and successfully immobilized onto the surface of porous silica particles by polymerization. Polysaccharide derivative was calculated as 10.33% in the stationary phase prepared. The new stationary phase (PMSP) showed both hydrophilic interaction (HILIC) and per aqueous liquid chromatography (PALC) characteristics. The effects of column temperature, the water content, pH and ion strength of mobile phase on the retention time of test compounds in highly aqueous eluents were investigated to evaluate the PALC features of PMSP. The column efficiency is about 31,000 plates/m for benzoic acid in water/ACN (97/3, v/v) mobile phase at a flow rate of 1.0 mL/min. Compared with C18 column, the PMSP had shorter retention time for weak polar and non-polar compounds, but also showed stronger retention for strong polar compounds. It indicated that PALC was a suitable mode of chromatography as replacement of HILIC and complementarity of reversed-phase liquid chromatography (RPLC).  相似文献   

14.
Summary The separation of metal-ions on several new silica-bound azo-coupled chelating stationary phases is described. Retention on 2-methyl-8-quinolinol and N-(1-naphthyl)-ethylenediamine phases is in the order of known homogeneous-solution stability constants. Very short retention times were obtained on the 2-methyl-8-quinolinol phase compared to an 8-quinolinol phase. A reversed order of retention was observed on -diketone and dithizone stationary phases in tartrate mobile phase. Two different mechanisms of metal-column interaction appear to occur. Large pH and mobile-phase buffer concentration effects were exhibited, especially by the diketone and dithizone phases. An excellent separation of a six-metal mixture is demonstrated on a dithizone column.  相似文献   

15.
Inorganic anions and cations in environmental waters were determined by ion chromatography. Stationary and mobile phases were examined for the simultaneous separation of both anions and cations. Cations detection by UV detection requires a mobile phase with a UV absorbing additive, which indirectly visualizes cations as negative peaks. Simultaneous separation of anions and cations were achieved when using an eluent that consists of inorganic acid with weak basic amino acid as additives. It was convenient to separate both anions and cations by coupling anion-exchange and cation-exchange columns in tandem. The order of the separation columns connected affected the elution profiles. When the eluent comprises of multiple anions and a single cation, the anion-exchange column should be connected in the upper stream, whereas when the eluent comprises multiple cations and a single anion, the cation-exchange column should be connected in the upper stream. Use of switching valves also allowed simultaneous separation of anions and cations in a single chromatographic run. In the present work, operating conditions were optimized for the simultaneous separation of anions and cations.  相似文献   

16.
对蛋白质在离子交换柱上选择民性和非吸附特性进行了研究。蛋白质在有机磷酸锆阳离子色谱柱上,其保留作用随流动相pH值在离子强度的增加而减小;蛋白质在强阳离子和强阴离子色谱柱上的保留作用,即是流动相中的pH值等于蛋白质的等当点,其净电荷为零。不册蛋白质仍有不同程度的保留,这主要是由于蛋白质的三维结构使电荷 密度的大小和分布的不均匀以及离子交换填料表面性质的影响。  相似文献   

17.
The solvation parameter model system constants and retention factors were used to interpret retention properties of 39 calibration compounds on a biphenylsiloxane-bonded stationary phase (Kinetex biphenyl) for acetone-water binary mobile phase systems containing 30–70% v/v. Variation in system constants, phase ratios, and retention factors of acetone-water binary mobile phases systems were compared with more commonly used acetonitrile and methanol mobile phase systems. Retention properties of acetone mobile phases on a Kinetex biphenyl column were more similar to that of acetonitrile than methanol mobile phases except with respect to selectivity equivalency. Importantly, selectivity differences arising between acetone and acetonitrile systems (the lower hydrogen-bond basicity of acetone-water mobile phases and differences in hydrogen-bond acidity, cavity formation and dispersion interactions) could be exploited in reversed-phase liquid chromatography method development on a Kinetex biphenyl stationary phase.  相似文献   

18.
Poly(ionic liquid)‐modified stationary phases can have multiple interactions with solutes. However, in most stationary phases, separation selectivity is adjusted by changing the poly(ionic liquid) anions. In this work, two poly(ionic liquid)‐modified silica stationary phases were prepared by introducing the cyano or tetrazolyl group on the pendant imidazolium cation on the polymer chains. Various analytes were selected to investigate their mechanism of retention in the stationary phases using different mobile phases. Two poly(ionic liquid)‐modified stationary phases can provide various interactions toward solutes. Compared to the cyano‐functionalized poly(ionic liquid) stationary phase, the tetrazolyl‐functionalized poly(ionic liquid) stationary phase provides additional cation‐exchange and π‐π interactions, resulting in different separation selectivity toward analytes. Finally, applicability of the developed stationary phases was demonstrated by the efficient separation of nonsteroidal anti‐inflammatory drugs.  相似文献   

19.
以双三氟甲烷磺酰亚胺离子([NTf2]-)为阴离子,合成阳离子烷基取代不同(C1、C2和C4)的硅烷基咪唑离子液体,以其为固定相制备气相色谱填充柱。 硅烷基咪唑离子液体为强极性固定相;阳离子结构影响固定相的热稳定性、极性和分离性能。 在这些离子液体固定相中,1-丁基-3-[(3-三甲氧基硅基)-丙基]咪唑双三氟甲烷磺酰亚胺([PBIM]NTf2)对Grob试剂分离性能较好。 利用溶剂化作用参数模型,评价[PBIM]NTf2固定相特性,研究固定相-组分分子之间相互作用机制;同时考察[PBIM]NTf2色谱柱对不同类型化合物的分离性能。 结果表明,[PBIM]NTf2固定相主要作用力是氢键碱性和偶极作用,对烷烃、醇、酯和胺等不同类型的样品组分表现出良好的分离能力。  相似文献   

20.
Reversed phase liquid chromatography of alkyl-imidazolium ionic liquids   总被引:2,自引:0,他引:2  
Eleven 1-alkyl-3-methyl imidazolium ionic liquid (IL) salts were analyzed in reversed phase mode with a Kromasil C18 column. The mobile phases were water-rich acetonitrile solutions (water content > or =70%, v/v) without any added salts. It is shown that it is possible to separate different ILs sharing the same cation and differing by the anion when salt-free mobile phases are used. When a buffer, acetate or phosphate salt, or any salt, such as sodium chloride or sodium tetrafluorobarate, is added to the mobile phase, the ILs differing only by their anions cannot be separated. ILs with different alkyl chains in the imidazolium cation are separated by mobile phases with or without added salts following a hydrophobic interaction behavior: log k is proportional to nC, the carbon number of the alkyl chain. Important differences in ion/stationary phase interactions are observed depending on the ionic content of the mobile phase. With salt-free mobile phases, the IL/C18 stationary phase interactions correspond to concave isotherms associated with fronting peaks for all ILs. With mobile phase containing 0.01 M of salt, tailing IL peaks correspond to convex adsorption isotherms. Also, the IL retention factor depends on the concentration and nature of the added salt. Hexafluorophosphate chaotropic anions can adsorb on the Kromasil C18 surface dramatically increasing the imidazolium cation retention factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号