首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The isolation and identification of twenty‐two components (including one new compound) from the whole herb of Clinoponium laxiflorum (Hay) Matsum (Labiatae) are described. Their structures were determined on the basis of spectral and chemical transformation. One new compound is methyl rosmarinate. The other twenty‐one compounds include three steroids (α‐spinasterol, α‐spinasteryl‐3‐O‐β‐D‐glucopyranoside, and β‐sitosteryl‐3‐O‐β‐glucopyranoside), three triterpenes (oleanolic acid, ursolic acid, and betulinic acid), nine flavonoids (didymin, apigenin‐7‐O‐β‐glucopyranoside, luteolin‐7‐O‐β‐glucopyranoside, isosakuranetin, narigenin, apigenin, luteolin, narirutin, and hesperidin), three lignolic acids (rosmarinic acid, 3‐(3,4‐dihydroxyphenyl)lactic acid, and caffeic acid), and three phenols (4‐hydroxybenzaldehyde, 3,4‐dihydroxybenzaldehyde, and 3,4‐dihydroxybenzoic acid).  相似文献   

2.
Under the inhibition of Cu+2‐induced LDL oxidation‐guided fractionation, two new flavone glycosides with galloyl substitution were isolated from the dried fallen leaves of Terminalia catappa L. Their structures were established as apigenin 6‐C‐(2″‐O‐galloyl)‐β‐D‐glucopyranoside ( 1 ) and apigenin 8‐C‐(2″‐O‐galloyl)‐β‐D‐glucopyranoside ( 2 ), together with four known flavone glycosides, isovitexin, vitexin, isoorientin, and rutin, on the basis of spectroscopic method. Compounds 1 and 2 showed significant antioxidative effects. Their IC50 were 2.1 and 4.5 μM, respectively.  相似文献   

3.
A new biflavonoid glucoside, apigenin‐7‐O‐β‐D‐glucopyranoside‐(3′‐O‐7″)‐quercetin‐3″‐methyl ether ( 1 ) together with twenty known compounds, apigenin ( 2 ), luteolin ( 3 ), chrysoeriol ( 4 ), tricin ( 5 ), hispidulin ( 6 ), pectolinarigenin ( 7 ), eupatilin ( 8 ), 5,7‐dihydroxy‐6,3′,4′,5′‐tetramethoxyflavone ( 9 ), 5,7,4′‐trihydroxy‐6,3′,5′‐trimethoxyflavone ( 10 ), 3,6‐O‐dimethylquercetagetin‐7‐O‐β‐D‐glucoside ( 11 ), 6‐hydroxy‐5,7‐dimethoxy‐coumarin ( 12 ), taraxerol ( 13 ), taraxeryl acetate ( 14 ), a mixture of β‐sitosterol ( 15 ) and stigmasterol ( 16 ), a mixture of the n‐alkyl trans‐p‐coumarates ( 17 ), a mixture of the n‐alkyl trans‐ferulates ( 18 ), 2‐hydroxy‐4,6‐dimethoxyacetophenone ( 19 ), 4‐hydroxy‐2,6‐dimethoxyphenol‐1‐O‐β‐D‐glucopyranoside ( 20 ), and 2‐hydroxycinnamoyl‐β‐D‐glucopyranoside ( 21 ), were isolated from the whole plant of Seriphidium santolium Poljak. The structures of these compounds were determined by means of spectral and chemical studies.  相似文献   

4.
We developed a simple and meaningful preparative method for the separation and purification of the main phenolic compounds from the leaves of celery (Apium graveolens L. var. dulce Mill./Pers.) and we established an accurate and specific analytical method for the identification of the main phenolic compounds from celery leaves. The crude extract from celery leaves was prefractioned by polyamide resin to enrich the phenolic compounds. They were then purified further by preparative high‐performance liquid chromatography, and seven main phenolic compounds were obtained: including chlorogenic acid, luteolin 7‐O‐β‐d‐ apiofuranosyl(1→2)‐β‐d‐ glucopyranoside, luteolin 7‐O‐β‐d‐ glucopyranoside, apiin, chrysoeriol 7‐O‐β‐d‐ apiofuranosyl(1→2)‐β‐d‐ glucopyranoside, luteolin 7‐O‐[β‐d‐ apiofuranosyl(1→2)‐(6′′‐O‐malonyl)]‐β‐d‐ glucopyranoside, and apigenin 7‐O‐[β‐d‐ apiofuranosyl(1→2)‐(6′′‐O‐malonyl)]‐β‐d‐ glucopyranoside. Their purities were measured by using high‐performance liquid chromatography, and their chemical structures were confirmed using UV spectrophotometry, ultra high performance liquid chromatography with quadrupole time‐of‐flight tandem mass spectrometry, and NMR spectroscopy. Our studies indicate that preparative high‐performance liquid chromatography combined with polyamide resin is a simple and meaningful preparative method for the separation and purification of phenolic compounds from the leaves of celery or other plants, and the use of UV spectrophotometry, ultra high performance liquid chromatography with quadrupole time‐of‐flight tandem mass spectrometry, and NMR spectroscopy is an accurate and specific analytical method for the identification of phenolic compounds.  相似文献   

5.
Triterpenoid Saponins from Luculia pincia Hook   总被引:1,自引:0,他引:1  
Two new triterpenoid saponins, cincholic acid-3-O-β-D-xylopyranoside, 28-O-β-D-glucopyranosyl ester (I), quinovic acid28-O-β-D-glucopyranosyl ester (4), and a new phenolic glucoside, 4-[4‘‘-O-( 2‘‘, 3‘‘, 5‘‘, 6‘‘-tetrahydroxy phenyl)-β-D-glucoside]-l-butene (2), along with five known triterpenoid saponins and one phenolic glucoside were isolated from the n-butanol fraction of the stems of Luculia pinciana Hook. Their structures were established by means of spectroscopic methods.  相似文献   

6.
A simple and rapid high‐performance thin‐layer chromatographic method was developed for the separation and determination of six flavonoids (rutin, luteolin‐7‐O‐β‐glucoside, chamaemeloside, apigenin‐7‐O‐β‐glucoside, luteolin, apigenin) and one coumarin, umbelliferone from chamomile plant samples and dietary supplements. The separation was achieved on amino silica stationary phase using dichloromethane/acetonitrile/ethyl formate/glacial acetic acid/formic acid (11:2.5:3:1.25:1.25 v/v/v/v/v) as the mobile phase. The quantitation of each compound was carried out using densitometric reflection/absorption mode at their respective absorbance maxima after postchromatographic derivatization using natural products reagent (1% w/v methanolic solution of diphenylboric acid‐β‐ethylamino ester). The method was validated for specificity, limits of detection and quantification, precision (intra‐ and interday) and accuracy. The limits of detection and quantification were found to be in the range from 6–18 and 16–55 ng/band for six flavonoids and one coumarin, respectively. The intra‐ and interday precision was found to be <5% RSD and recovery of all the compounds was >90%. The data acquired from high‐performance thin‐layer chromatography was processed by principal component analysis using XLSTAT statistical software. Application of principal component analysis and agglomerative hierarchial clustering was successfully able to differentiate two chamomiles (German and Roman) and Chrysanthemum.  相似文献   

7.
Seven phenolic compounds, including one new compound trans‐3,4,3′,5′‐tetrahydroxy‐4′‐methylstilbene 4‐O‐β‐D‐xylopyranosyl‐(1→6)‐β‐D‐glucopyranoside ( 1 ), together with six known compounds (+)‐hinokiol ( 2 ), 6‐hydroxy‐5,7‐dimethoxycoumarin ( 3 ), caffeic acid ( 4 ), vanillic acid ( 5 ), 4‐hydroxy‐2,6‐dimethoxyphenol‐1‐O‐β‐D‐glucopyranoside ( 6 ) and 4‐allyl‐2,6‐dimethoxyphenol‐1‐O‐β‐D‐glucopyranoside ( 7 ), were isolated from the root bark of Elsholtzia bodinieri Van't. Their structures were determined on the basis of spectroscopic and chemical evidence.  相似文献   

8.
Four novel triterpenoid saponins, Vaccariside B‐E (1–4), were isolated from the seeds of Vaccaria segetalis and their structures were elucidated as 3‐O‐β‐D‐galactopyranosyl‐(1–2)‐β‐D‐glucuronopyranosyl quillaic add 28‐O‐β‐D‐xylopyranosyl‐(1–3)‐α‐L rhamno‐pyranosyl‐(1–2)‐[α‐L‐arabinofura‐nosyl‐(1–3)]‐4‐O‐acetyl‐β‐D)‐fucopyranoside (1), 3‐O‐β‐D‐galactopyranosyl ‐ (1–2) ?3‐O‐acetyl‐β‐D ‐ glucuronopyranosyl quillaic acid 28‐O‐β‐D‐xylopyranosyl‐(1–3)‐α‐L‐rhamnopyra‐nosyl‐(1–2)‐[α‐L‐arabinofuranosyl‐(1–3)]‐4‐O‐acetyl‐β‐D‐fucopyranoside (2), 3‐O‐β‐D‐galactopyranosyl‐(1–2)‐β‐D‐glucuronopyranosyl quillaic add 28‐O‐α‐L‐arabinopyranosyl‐(1–3)‐α‐L‐rhamnopyranosyl‐(1–2)‐[α‐L‐arabinofuranosyl‐(1–3)]‐4‐O‐acetyl‐β‐D‐fucopyranoside (3), 3‐O‐β‐D‐galacto‐pyranosyl‐(1–2)‐[β‐D‐xytopyranosyl‐(1–3)]‐β‐D‐glucurono‐pyranosyl quillaic add 28‐O‐β‐D‐xylopyranosyl‐(1–3)‐α‐L‐rhamnopyranosyl‐(1–2)‐[α‐L‐arabinofuranosyl‐(1–3)]‐4‐O‐acetyl‐β‐D‐fucopyranoside (4), respectively.  相似文献   

9.
Sixteen compounds were isolated from the aerial parts of Solanum incanum L. These compounds included ten flavonoids ( 1‐10 ), chlorogenic acid ( 11 ), adenosine ( 12 ), benzyl‐O‐β‐D‐xylopyranosyl(1→2)‐β‐D‐glucopyranoside ( 13 ), and three phenylalkanoic acids ( 14‐16 ). The structures were determined from their physical and spectral data. Among these compounds, kaempferol 3‐O‐(6″′‐O‐2,5‐dihydroxycinnamoyl)‐β‐D‐glucopyranosyl (1→2) β‐D‐glucopyranoside ( 10 ) was identified as a new compound.  相似文献   

10.
Two new flavonoids, abutilin A and B, were isolated from the chloroform soluble fraction of Abutilon pakistanicum and their structures assigned from 1H and 13C NMR spectra, DEPT and by 2D COSY, HMQC and HMBC experiments. Ferulic acid (3), (E)‐cinnamic acid (4), 5‐hydroxy‐4′,6,7,8‐tetramethoxyflavone (5), kaempferol (6), luteolin (7) and luteolin 7‐O‐β‐D ‐glucopyranoside (8) have also been reported from this species. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
This report presents the first ultra high performance supercritical fluid chromatography diode array detector based assay for simultaneous determination of iridoid glucosides, flavonoid glucuronides, and phenylpropanoid glycosides in Verbena officinalis (Verbenaceae) extracts. Separation of the key metabolites was achieved in less than 7 min on an Acquity UPC2 Torus Diol column using a mobile phase gradient comprising subcritical carbon dioxide and methanol with 0.15% phosphoric acid. Method validation for seven selected marker compounds (hastatoside, verbenalin, apigenin‐7‐O‐glucuronide, luteolin‐7‐O‐glucuronide, apigenin‐7‐O‐diglucuronide, verbascoside, and luteolin‐7‐O‐diglucuronide) confirmed the assay to be sensitive, linear, precise, and accurate. Head‐to‐head comparison to an ultra high performance liquid chromatography comparator assay did prove the high orthogonality of the methods. Quantitative result equivalence was evaluated by Passing‐Bablok‐correlation and Bland‐Altman‐plot analysis. This cross‐validation revealed, that one of the investigated marker compound peaks was contaminated in the ultra high performance liquid chromatography assay by a structurally related congener. Taken together, it was proven that the ultra high performance supercritical fluid chromatography instrument setup with its orthogonal selectivity is a true alternative to conventional reversed phase liquid chromatography in quantitative secondary metabolite analysis. For regulatory purposes, assay cross‐validation with highly orthogonal methods seems a viable approach to avoid analyte overestimation due to coeluting, analytically indistinguishable contaminants.  相似文献   

12.
Novel methods for the determination of polyphenolic antioxidants present in extracts from inflorescences of Cirsium vulgare (Savi) Ten. based on ultra‐high performance liquid chromatography with photodiode array and chemiluminescence detection have been developed. Under the optimized conditions of chromatographic separation the analytical characteristic of the method was performed. The proposed method was successfully applied to the determination of ten polyphenols present in inflorescences of Cirsium vulgare . A comparison of the contents of analytes in extracts prepared by using various extraction media (methanol, ethanol, 70% methanol, 70% ethanol, and water) was carried out for the first time. For the postcolumn detection of scavenging activity of polyphenolic antioxidants against reactive oxygen species (H2O2, OH, O2• −) three systems based on chemiluminescence of luminol were used. A review of the current scientific literature shows that this is the first report on the application of luminol‐based postcolumn detection for the on‐line investigation of OH scavenging activity. The main compound determined in extracts from inflorescences of Cirsium vulgare was apigenin 7‐O‐glucuronide, whereas the highest antioxidant activity was observed for chlorogenic acid, luteolin 7‐O‐glucoside, and apigenin.  相似文献   

13.
Three new acacic acid derivatives, named coriariosides C, D, and E ( 1–3 ) were isolated from the roots of Albizia coriaria. Their structures were elucidated on the basis of extensive 1D‐ and 2D‐NMR studies and mass spectrometry as 3‐O‐[β‐D ‐xylopyranosyl‐(1 → 2)‐β‐D ‐fucopyranosyl‐(1 → 6)‐2‐(acetamido)‐2‐deoxy‐β‐D ‐glucopyranosyl]‐21‐O‐{(2E,6S)‐6‐O‐{4‐O‐[(2E,6S)‐2,6‐dimethyl‐ 6‐O‐(β‐D ‐quinovopyranosyl)octa‐2,7‐dienoyl]‐4‐O‐[(2E,6S)‐2,6‐dimethyl‐6‐O‐(β‐D ‐quinovopyranosyl)octa‐2,7‐dienoyl]‐β‐D ‐quinovopyranosyl}‐2,6‐dimethylocta‐2,7‐dienoyl}acacic acid 28‐O‐β‐D ‐xylopyranosyl‐(1 → 4)‐α‐L ‐rhamnopyranosyl‐(1 → 2)‐β‐D ‐glucopyranosyl ester ( 1 ), 3‐O‐{β‐D ‐fucopyranosyl‐(1 → 6)‐[β‐D ‐glucopyranosyl‐(1 → 2)]‐β‐D ‐glucopyranosyl}‐21‐O‐{(2E,6S)‐6‐O‐{4‐O‐[(2E,6S)‐2,6‐dimethyl‐6‐O‐(β‐D ‐quinovopyranosyl)octa‐2,7‐dienoyl]‐4‐O‐[(2E,6S)‐2,6‐dimethyl‐6‐O‐(β‐D ‐quinovopyranosyl)octa‐2,7‐dienoyl]‐β‐D ‐quinovopyranosyl}‐2,6‐dimethylocta‐2,7‐dienoyl}acacic acid 28‐O‐α‐L ‐rhamno pyranosyl‐(1 → 2)‐β‐D ‐glucopyranosyl ester ( 2 ), and 3‐O‐[β‐D ‐fucopyranosyl‐(1 → 6)‐β‐D ‐glucopyranosyl]‐21‐O‐{(2E,6S)‐6‐O‐{4‐O‐[(2E,6S)‐2,6‐dimethyl‐6‐O‐(β‐D ‐quinovopyranosyl)octa‐2,7‐dienoyl)‐β‐D ‐quinovopyranosyl]octa‐2,7‐dienoyl}acacic acid 28‐O‐β‐D ‐glucopyranosyl ester ( 3 ). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Folium Turpiniae has been used as a traditional Chinese medicine for the treatment of abscesses, fevers, gastric ulcers, and inflammations. This paper describes a strategy of combining HPLC with photodiode array detection and quadrupole TOF‐MS, as well as phytochemical and chemometrics analysis for the characterization, isolation, and simultaneous quantification of the chemical constituents of Folium Turpiniae. 19 constituents were identified, namely, 11 flavonoids, seven gallic acid derivates, and quinic acid. Among them, 15 compounds were identified in this herbal medicine for the first time; compound 10 appears to be novel and was isolated and confirmed as ellagic acid‐3‐O‐α‐l ‐rhamnopyranoside by NMR spectroscopy and MS. In addition, nine marker compounds, namely gallic acid ( 2 ), ellagic acid‐3‐O‐α‐l ‐rhamnopyranoside ( 10 ), apigenin‐7‐O‐(2′′‐rhamnosyl)gentiobioside ( 11 ), ellagic acid ( 12 ), luteolin‐7‐O‐β‐d ‐neohesperidoside ( 13 ), ligustroflavone ( 14 ), 4′‐O‐methylellagic acid‐3‐O‐α‐l ‐rhamnopyranoside ( 16 ), rhoifolin ( 17 ), and neobudofficide ( 18 ), were quantified simultaneously in ten batches of Folium Turpiniae collected from different regions. Moreover, hierarchical clustering analysis and principal component analysis indicated that both samples from Hubei ( S1 ) and Guangxi ( S3 ) provinces showed apparent differences from the others. Samples from Jiangxi province ( S2 , S4 , and S7–10 ) possessed similar properties and therefore belong to the same group.  相似文献   

15.
A new clionasterol glucoside, clionasterol‐[(1'→3α)‐O‐β‐D]‐glucopyranoside ( 1 ), a new acylated clionasterol glucoside, clionasterol‐[6'‐O‐acyl‐(1'→3β)‐O‐b‐D]‐glucopyranoside ( 2 ) and clionasterol ( 3 ) were isolated from the aerial parts of Oplismenus burmannii. The nature and length of fatty acid acyl chains in 2 was identified by alkaline methanolysis of compound 2 . The aglycone fraction on GC‐MS analysis showed three peaks in GC at tR 49.86 (82.1%), 51.13 (13.3%) and 56.53 (4.6%) min, which were characterized as arachidic acid methyl ester ( a ) oleic acid methyl ester ( b ) and 12‐methyltetradecanoic acid methyl ester ( c ) respectively. Thus 2 was characterized as a mixture of three new compounds, clionasterol‐[6'‐O‐eicosanoyl‐(1'→3β)‐O‐β‐D]‐glucopyranoside ( 2a ), clionasterol‐[6'‐O‐(8Z)‐octa‐deca‐9‐enoyl‐(1'→3β)‐O‐β‐D]‐glucopyranoside ( 2b ) and clionasterol‐[6'‐O‐(12‐methyltetradecanoyl)‐(1'→3β)‐O‐β‐D]‐glucopyranoside ( 2c ).  相似文献   

16.
Abstract

Glucuronic acid‐containing di‐ and trisaccharide thioglycoside building blocks, ethyl (benzyl 2,3,4‐tri‐O‐benzyl‐β‐D‐glucopyranosyluronate)‐(1 → 2)‐3‐O‐allyl‐4,6‐di‐O‐benzyl‐1‐thio‐α‐D‐mannopyranoside, ethyl (benzyl 2,3,4‐tri‐O‐benzyl‐β‐D‐glucopyranosyluronate)‐(1 → 2)‐6‐O‐acetyl‐3‐O‐allyl‐4‐O‐benzyl‐1‐thio‐α‐D‐mannopyranoside and ethyl (2,3,4‐tri‐O‐benzyl‐β‐D‐xylopyranosyl)‐(1 → 4)‐[(benzyl 2,3,4‐tri‐O‐benzyl‐β‐D‐glucopyranosyluronate)‐(1 → 2)]‐3‐O‐allyl‐6‐O‐benzyl‐1‐thio‐α‐D‐mannopyranoside, corresponding to repetitive structures in the capsular polysaccharide (CPS) of Cryptococcus neoformans, have been synthesized. The blocks contain an orthogonal allyl group in the 3‐position of the mannose residue to allow formation of the (1 → 3)‐linked mannan backbone of the CPS and benzyl ethers as persistent protecting groups to facilitate access to acetylated target structures. The glucuronic acid moiety was introduced using an acetylated trichloroacetimidate donor and the xylose residue employing the benzoylated bromo sugar to ensure β‐selectivity in the couplings. Exchange to benzyl protecting groups was then performed at the di‐ or trisaccharide level. Assembly of suitable blocks employing DMTST as promoter in diethyl ether then afforded, in high yield and with stereoselectivity, a protected pentasaccharide corresponding to a C. neoformans serotype D CPS structure.  相似文献   

17.
From the methanolic extract of the leaves of Planchonella duclitan, 2α,3α,19α,23‐tetrahydroxy‐13,27‐cyclours‐11‐en‐28‐oic acid (1), myrianthic acid (2), 2‐hydroxyursolic acid (3), ursolic acid (4), pomolic acid (5), rotundic acid (6), and jacoumaric acid (7) were isolated, and their structures were elucidated on the basis of their spectroscopic analysis. Among them, compound 1 was a new cyclopropyl ursane‐type triterpene acid. Additionally, compounds 4 and 7 showed significant cytotoxicity toward human colorectal carcinoma cell line HT29 and human breast carcinoma cell line MCF‐7 with IC50 values ranging from 5.8 ± 1.4 to 6.5 ± 1.9 μM.  相似文献   

18.
From the whole plant of Morina nepalensis var. alba Hand.‐Mazz., two new acylated flavonoid glycosides ( 1 and 2 ), together with four known flavonoid glycosides ( 3–6 ), were isolated. Their structures were determined to be quercetin 3‐O‐[2″′‐O‐(E)‐caffeoyl]‐α‐L ‐arabinopyranosyl‐(1→6)‐β‐D ‐galactopyranoside (monepalin A, 1 ), quercetin 3‐O‐[2″′‐O‐(E)‐caffeoyl]‐α‐L ‐arabinopyranosyl‐(1→6)‐β‐D ‐glucopyranoside (monepalin B, 2 ), quercetin 3‐O‐α‐L ‐arabinopyranosyl‐(1→6)‐β‐D ‐galactopyranoside (rumarin, 3 ), quercetin 3‐O‐β‐D ‐galactopyranoside ( 4 ), quercetin 3‐O‐β‐D ‐glucopyranoside ( 5 ) and apigenin 4O‐β‐D ‐glucopyranoside ( 6 ). Their structures were determined on the basis of chemical and spectroscopic evidence. Complete assignments of the 1H and 13C NMR spectra of all compounds were achieved from the 2D NMR spectra, including H–H COSY, HMQC, HMBC and 2D HMQC‐TOCSY spectra. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
Columns containing different types of cyclodextrin derivatives have been evaluated for chiral gas chromatographic separation of atropisomeric PCBs, o,p´‐DDT and o,p´‐DDD. Separation was attempted on columns containing mixed chiral selectors, and the performance of two closely related selectors was also examined. The cyclodextrins were: permethylated‐β‐CD (PM‐β‐CD), heptakis(2,3‐di‐O‐methyl‐6‐Otert‐butyldimethylsilyl)‐β‐CD (2,3‐M‐6‐TBDMS‐β‐CD), heptakis(2,3‐di‐O‐methyl‐6‐Otert‐hexyldimethylsilyl)‐β‐CD (2,3‐M‐6‐THDMS‐β‐CD), and heptakis(2,3‐di‐O‐ethyl‐6‐Otert‐hexyldimethylsilyl)‐β‐cyclodextrin (2,3‐E‐6‐THDMS‐β‐CD). The cyclodextrins were dissolved in OV‐1701 or in a dimethylsiloxane/silarylene copolymer containing 5% phenyl in the backbone. The application of mixed chiral selectors led to improved separations, however; at most eleven PCB congeners were separated on a single column. Chiral resolution of o,p´‐DDD was achieved. The use of a dimethylsiloxane/silarylene copolymer as a matrix for the cyclodextrins is a promising approach. With such a matrix, blocking of the CD cavities by silicone substituent groups can be avoided, and a reasonable CD solubility can be provided. The selectivity of heptakis(2,3‐di‐O‐ethyl‐6‐Otert‐hexyldimethylsilyl)‐β‐CD and heptakis(2,3‐di‐O‐methyl‐6‐Otert‐hexyldimethylsilyl)‐β‐CD was quite different, the former selector could separate four congeners, while the latter separated ten congeners.  相似文献   

20.
Abstract

An efficient synthesis of the protected branched trisaccharide (2′S,3′S)‐(7‐O‐benzyl‐6‐O‐chloroacetyl‐3,4‐O‐(2′,3′‐dimethoxybutane‐2′,3′‐diyl)‐2‐Op‐methoxybenzyl‐L‐glycero‐α‐Dmanno‐heptopyranosyl)‐(1 → 3)‐[(2,3,4,6‐tetra‐O‐benzoyl‐β‐D‐glucopyranosyl)‐(1 → 4)]‐7‐O‐acetyl‐1,6‐anhydro‐2‐O‐benzyl‐L‐glycero‐β‐Dmanno‐heptopyranose, which is a key intermediate in the synthesis of inner core structures of Haemophilus and Neisseria LPSs, is described. The heptoses were formed by Grignard reactions using a benzyloxymethyl chloride or a commercial vinyl reagent. The anhydro bridge was formed by treatment of a 6‐OH methyl α‐heptoside precursor with FeCl3. The protecting group pattern allows modifications at the 2‐, 3‐, 4‐, and 6‐positions of the second heptose moiety and also, after acetolysis of the anhydro bridge, elongation at the reducing end, all known alterations found in the bacterial LPSs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号