首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
99Tc NMR has been suggested as an original method of evaluating the content of oxygen isotopes in oxygen‐18‐enriched water, a precursor for the production of radioisotope fluorine‐18 used in positron emission tomography. To this end, solutions of NH4TcO4 or NaTcO4 (up to 0.28 mol/L) with natural abundance of oxygen isotopes in virgin or recycled 18O‐enriched water have been studied by 99Tc NMR. The method is based on 16O/17O/18O intrinsic isotope effects in the 99Tc NMR chemical shifts, and the statistical distribution of oxygen isotopes in the coordination sphere of TcO4 and makes it possible to quantify the composition of enriched water by measuring the relative intensities of the 99Tc NMR signals of the Tc16O4−n18On isotopologues. Because the oxygen exchange between TcO4 and enriched water in neutral and alkaline solutions is characterized by slow kinetics, gaseous HCl was bubbled through a solution for a few seconds to achieve the equilibrium distribution of oxygen isotopes in the Tc coordination sphere without distortion of the oxygen composition of the water. Pertechnetate ion was selected as a probe due to its high stability in solutions and the significant 99Tc NMR shift induced by a single 16O→18O substitution (−0.43 ± 0.01 ppm) in TcO4 and spin coupling constant 1J(99Tc–17O) (131.46 Hz) favourable for the observation of individual signals of Tc16O4−n18On isotopologues.  相似文献   

2.
《化学:亚洲杂志》2017,12(18):2471-2479
Dysprosium(III) trifluoromethanesulfonate‐catalyzed per‐O ‐acetylation and regioselective anomeric de‐O ‐acetylation of carbohydrates can be tuned by adjusting the reaction medium. In this study, the per‐O ‐acetylation of unprotected sugars by using a near‐stoichiometric amount of acetic anhydride under solvent‐free conditions resulted in the exclusive formation of acetylated saccharides as anomeric mixtures, whereas anomeric de‐O ‐acetylation in methanol resulted in a moderate‐to‐excellent yield. Reactions with various unprotected monosaccharides or disaccharides followed by a semi‐one‐pot sequential conversion into the corresponding acetylated glycosyl hemiacetal also resulted in high yields. Furthermore, the obtained hemiacetals could be successfully transformed into trichloroimidates after Dy(OTf)3‐catalyzed glycosylation.  相似文献   

3.
Oxygen is an essential participant in the acid–base chemistry that takes place within many enzyme active sites, yet has remained virtually silent as a probe in NMR spectroscopy. Here, we demonstrate the first use of solution‐state 17O quadrupole central‐transition NMR spectroscopy to characterize enzymatic intermediates under conditions of active catalysis. In the 143 kDa pyridoxal‐5′‐phosphate‐dependent enzyme tryptophan synthase, reactions of the α‐aminoacrylate intermediate with the nucleophiles indoline and 2‐aminophenol correlate with an upfield shift of the substrate carboxylate oxygen resonances. First principles calculations suggest that the increased shieldings for these quinonoid intermediates result from the net increase in the charge density of the substrate–cofactor π‐bonding network, particularly at the adjacent α‐carbon site.  相似文献   

4.
The reaction of 1H‐tetrazole‐1‐acetic acid (Htza) and perchloric acid with cuprous chloride with slow evaporation at room temperature gave a novel 3D porous CuII coordination polymer, [Cu2(tza)4] · ClO4 · 4H2O ( 1 ), (tza = tetrazole‐1‐acetate). The structure exhibits an unusual 3D microporous coordination framework built up by four coordinated CuII nodes and bidentate bridging tza ligands with lvt‐type topology. Furthermore, the magnetic properties of complex 1 were also investigated.  相似文献   

5.
η3‐1,4,7,10‐tetraazacyclododecane molybdenum tricarbonyl reacts with allyl bromide and 3‐butenyl bromide in dimethylformamide in the presence of K2CO3 yielding 1‐(2‐propenyl)‐1,4,7,10‐tetraazacyclododecane ( 1a ) and 1‐(3‐butenyl)‐1,4,7,10‐tetraazacyclododecane ( 1b ), which on their part react with bromoacetic acid tert‐butyl ester in CH3CN to give 1‐(2‐propenyl)‐1,4,7,10‐tetraazacyclododecane‐4,7,10‐tris‐acetic acid tert‐butyl ester ( 2a ) and 1‐(3‐butenyl)‐1,4,7,10‐tetraazacyclododecane‐4,7,10‐tris‐acetic acid tert‐butyl ester ( 2b ), respectively. Compounds 2a and 2b are converted into the corresponding acids 1‐(2‐propenyl)‐1,4,7,10‐tetraazacyclododecane‐4,7,10‐tris‐acetic acid ( 4a ) (MPC) and 1‐(3‐butenyl)‐1,4,7,10‐tetraazacyclododecane‐4,7,10‐tris‐acetic acid ( 4b ) (MBC) via the trifluoroacetates 3a and 3b . Sm(NO3)3(H2O)6, LuCl3(THF)3, and TmCl3(H2O)6 react with 4a and 4b forming the lanthanide complexes Sm(MPC) ( 5 ), Lu(MPC) ( 6 ), Tm(MPC) ( 7a ) and Tm(MBC) ( 7b ). The IR as well as the 1H and 13C NMR spectra of the new compounds are reported and discussed.  相似文献   

6.
The crystal structure of the title compound, C10H12O4·H2O, consists of (3,4‐dimethoxyphenyl)acetic acid and water molecules linked by O—H...O hydrogen bonds to form cyclic structures with graph‐set motifs R12(5) and R44(12). These hydrogen‐bond patterns result in a three‐dimensional network with graph‐set motifs R44(20) and R44(22), and the formation of larger macrocycles, respectively. The C—C bond lengths and the endocyclic angles of the benzene ring show a noticeable asymmetry, which is connected with the charge‐transfer interaction of the carboxyl or methoxy groups and the benzene ring. The title compound is one of the simple carboxylic acid systems that form hydrates. Thus, the significance of this study lies in the analysis of the interactions in this structure and the aggregations occurring via hydrogen bonds in two crystalline forms of (3,4‐dimethoxyphenyl)acetic acid, namely the present hydrate and the anhydrous form [Chopra, Choudhury & Guru Row (2003). Acta Cryst. E 59 , o433–o434]. The correlation between the IR spectrum of this compound and its structural data are also discussed.  相似文献   

7.
Reactions of Hpymtza [Hpymtza = 5‐(2‐pyrimidyl)tetrazole‐1‐acetic acid] with MnCl2 · 4H2O under different pH conditions, afforded the complexes [Mn(pymtza)2(H2O)4] ( 1 ) and [Mn2(pymtza)2Cl2(EtOH)] · H2O ( 2 ). The compounds were structurally characterized by elemental analysis, IR spectroscopy and single‐crystal X‐ray diffraction. Compound 1 shows a mononuclear structure, whereas complex 2 has a 1D chain structure. In compound 1 , the pymtza ligand only acts in a monodentate manner to coordinate to one central MnII atom by one carboxylate atom, In 2 , pymtza acts as tetradentate ligand to connect three MnII ions. Compounds 1 and 2 display 3D networks by hydrogen bonding interactions. Furthermore, the luminescence properties of Hpymtza as well as compounds 1 and 2 were investigated at room temperature in the solid state.  相似文献   

8.
The Li, Rb and Cs complexes with the herbicide (2,4‐dichlorophenoxy)acetic acid (2,4‐D), namely poly[[aqua[μ3‐(2,4‐dichlorophenoxy)acetato‐κ3O1:O1:O1′]lithium(I)] dihydrate], {[Li(C8H5Cl2O3)(H2O)]·2H2O}n, (I), poly[μ‐aqua‐bis[μ3‐(2,4‐dichlorophenoxy)acetato‐κ4O1:O1′:O1′,Cl2]dirubidium(I)], [Rb2(C8H5Cl2O3)2(H2O)]n, (II), and poly[μ‐aqua‐bis[μ3‐(2,4‐dichlorophenoxy)acetato‐κ5O1:O1′:O1′,O2,Cl2]dicaesium(I)], [Cs2(C8H5Cl2O3)2(H2O)]n, (III), respectively, have been determined and their two‐dimensional polymeric structures are described. In (I), the slightly distorted tetrahedral LiO4 coordination involves three carboxylate O‐atom donors, of which two are bridging, and a monodentate aqua ligand, together with two water molecules of solvation. Conjoined six‐membered ring systems generate a one‐dimensional coordination polymeric chain which extends along b and interspecies water O—H...O hydrogen‐bonding interactions give the overall two‐dimensional layers which lie parallel to (001). In hemihydrate complex (II), the irregular octahedral RbO5Cl coordination about Rb+ comprises a single bridging water molecule which lies on a twofold rotation axis, a bidentate Ocarboxy,Cl‐chelate interaction and three bridging carboxylate O‐atom bonding interactions from the 2,4‐D ligand. A two‐dimensional coordination polymeric layer structure lying parallel to (100) is formed through a number of conjoined cyclic bridges, including a centrosymmetric four‐membered Rb2O2 ring system with an Rb...Rb separation of 4.3312 (5) Å. The coordinated water molecule forms intralayer aqua–carboxylate O—H...O hydrogen bonds. Complex (III) comprises two crystallographically independent (Z′ = 2) irregular CsO6Cl coordination centres, each comprising two O‐atom donors (carboxylate and phenoxy) and a ring‐substituted Cl‐atom donor from the 2,4‐D ligand species in a tridentate chelate mode, two O‐atom donors from bridging carboxylate groups and one from a bridging water molecule. However, the two 2,4‐D ligands are conformationally very dissimilar, with one phenoxyacetate side chain being synclinal and the other being antiperiplanar. The minimum Cs...Cs separation is 4.4463 (5) Å. Structure extension gives coordination polymeric layers which lie parallel to (001) and are stabilized by intralayer water–carboxylate O—H...O hydrogen bonds.  相似文献   

9.
The structures of the sodium, potassium and rubidium complex salts of (4‐fluorophenoxy)acetic acid (PFPA), namely poly[μ‐aqua‐aqua‐μ‐[2‐(4‐fluorophenoxy)acetato]‐κ3O 1,O 2:O1′‐sodium], [Na(C8H6FO3)(H2O)2]n , (I), and isotypic poly[μ5‐[2‐(4‐fluorophenoxy)acetato]‐κ5O 1,O 2:O 1,O 1′:O 1′:O 1′:O1′‐potassium], [K(C8H6FO3)]n , (II), and poly[μ5‐[2‐(4‐fluorophenoxy)acetato]‐κ5O 1,O 2:O 1,O 1′:O 1′:O 1′:O1′‐rubidium], [Rb(C8H6FO3)]n , (III), have been determined and their coordination polymeric structures described. In the structure of (I), the very distorted octahedral NaO6 coordination polyhedron comprises two bidentate chelating O‐atom donors (carboxylate and phenoxy) of the PFPA ligand and three O‐atom donors from water molecules, one monodentate and the other μ2‐bridging between inversion‐related Na centres in a cyclic manner. A bridging carboxylate donor generates two‐dimensional polymer layers lying parallel to (001), in which intralayer water O—H…O hydrogen‐bonding associations are also present. Structures (II) and (III) are isotypic, each having an irregular M O7 stereochemistry, with the primary metal–ligand bidentate chelate similar to that in (I) and extended into a two‐dimensional polymeric layered structure, lying parallel to (100), through five additional bridging carboxylate O atoms. Two of these bonds are from an O ,O ′‐bidentate chelate interaction and the other three are from μ3‐O‐atom bridges, generating cyclic links with short M M separations [3.9064 (17) Å for (II) and 4.1001 (8) for (III)], the shortest being a centrosymmetric four‐membered cyclic link. In the crystals of (I)–(III), intralayer C—H…F interactions are present, but no π–π ring interactions are found.  相似文献   

10.
The 17O NMR spectra of 17O isotope‐enriched tributyltin(IV) acetate (1) and dibutyltin(IV) diacetate (2) were recorded in various solvents over wide temperature ranges. Only a single 17O signal was observed for both oxygen atoms of the —COOSn—groups under these experimental conditions, in both non‐coordinating and coordinating solvents. The 17O NMR spectra of tert‐butyl acetate (3) were obtained for comparison. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

11.
The mechanism of the benzophenone‐sensitized photooxidation of phosphonium salts of (phenylthio)acetic acid was studied as a means for understanding how these salts function as coinitiators in the free‐radical photopolymerization of vinyl monomers. Both steady‐state and nanosecond flash photolytic methods were used to determine, in a quantitative manner, the mechanism of primary and secondary photoreactions for three quaternary phosphonium salts containing butyl and/or phenyl groups, i.e., P+(C4H9)4, P+(C4H9)(C6H5)3, and P+(C6H5)4. It was found that the initial polymerization rates were the same for all three phoshonium salts of (phenylthio)acetic acid and were equal to those found previously for tetralkyl ammonium salts. The polymerization rates were more than twice the rates found for direct initiation by benzophenone and by the benzophenone‐(phenylthio)acetic acid initiating system. These results correlate well with the large quantum yields of ?CH2SC6H5 radicals (the main initiating radicals) found in the complementary photochemical investigation. It was found that a detailed knowledge of the photochemical reactions in the photoinitiating systems was critical to understand the kinetics of polymerization. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 8013–8022, 2008  相似文献   

12.
The performance of glow discharge time‐of‐flight mass spectrometry in isotopic differentiation is revealed using the distribution of oxygen isotopes 16O and 18O in barrier‐type anodic alumina films as a focus. Anodic alumina films comprising 18O‐rich layers of controlled thickness were formed by the appropriate combination of anodising of superpure aluminium in electrolytes enriched with 18O isotopes and of natural abundance of 18O isotopes. Analysis of the elemental depth profiles of selected ionic species, i.e. 16O18O, allowed determination of the locations of the 18O‐rich layers and the 18O/16O interface. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
Peaks with anomalous abundance found in the mass spectra are associated with ions with enhanced stability. Among the scientific community focused on mass spectrometry, these peaks are called ‘magic peaks’ and their stability is often because of suggestive symmetric structures. Here, we report findings on ionised Na‐acetic acid clusters [Na+‐(AcA)n] produced by Na‐doping of (AcA)n and UV laser ionisation. Peaks labelled n = 2, 4, 8 are clearly distinguishable in the mass spectra from their anomalous intensity. Ab initio calculations helped elucidate cluster structures and energetic. A plausible interpretation of the magic peaks is given in terms of (AcA)n formed by dimer aggregation. The encasing of Na+ by twisted dimers is proposed to be the origin of the enhanced cluster stability. A conceivable dimer‐formed tube‐like closed structure is found for the Na+‐(AcA)8. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
17O NMR spectroscopy has been the subject of vivid interest in recent years, because there is increasing evidence that it can provide unique insight into the structure and reactivity of many molecules and materials. However, due to the very poor natural abundance of oxygen‐17, 17O labeling is generally a prerequisite. This is a real obstacle for most research groups, because of the high costs and/or strong experimental constraints of the most frequently used 17O‐labeling schemes. Here, we show for the first time that mechanosynthesis offers unique opportunities for enriching in 17O a variety of organic and inorganic precursors of synthetic interest. The protocols are fast, user‐friendly, and low‐cost, which makes them highly attractive for a broad research community, and their suitability for 17O solid‐state NMR applications is demonstrated.  相似文献   

15.
Hydantoin‐5‐acetic acid [2‐(2,5‐dioxoimidazolidin‐4‐yl)acetic acid] and orotic acid (2,6‐dioxo‐1,2,3,6‐tetrahydropyrimidine‐4‐carboxylic acid) each contain one rigid acceptor–donor–acceptor hydrogen‐bonding site and a flexible side chain, which can adopt different conformations. Since both compounds may be used as coformers for supramolecular complexes, they have been crystallized in order to examine their conformational preferences, giving solvent‐free hydantoin‐5‐acetic acid, C5H6N2O4, (I), and three crystals containing orotic acid, namely, orotic acid dimethyl sulfoxide monosolvate, C5H4N2O4·C2H6OS, (IIa), dimethylammonium orotate–orotic acid (1/1), C2H8N+·C5H3N2O4·C5H4N2O4, (IIb), and dimethylammonium orotate–orotic acid (3/1), 3C2H8N+·3C5H3N2O4·C5H4N2O4, (IIc). The crystal structure of (I) shows a three‐dimensional network, with the acid function located perpendicular to the ring. Interestingly, the hydroxy O atom acts as an acceptor, even though the carbonyl O atom is not involved in any hydrogen bonds. However, in (IIa), (IIb) and (IIc), the acid functions are only slightly twisted out of the ring planes. All H atoms of the acidic functions are directed away from the rings and, with respect to the carbonyl O atoms, they show an antiperiplanar conformation in (I) and synperiplanar conformations in (IIa), (IIb) and (IIc). Furthermore, in (IIa), (IIb) and (IIc), different conformations of the acid O=C—C—N torsion angle are observed, leading to different hydrogen‐bonding arrangements depending on their conformation and composition.  相似文献   

16.
The oxidation of the trans,cis‐( 2 ) and trans,trans‐epoxides ( 3 ) of differently substituted (Z)‐3‐arylidene‐1‐thioflavan‐4‐ones ( 1 ) with dimethyldioxirane (DMD) yielded the appropriate sulfoxides ( 4, 5 ) and sulfones ( 6, 7 ). The structures were elucidated by the extensive application of one‐ and two‐dimensional 1H, 13C and 17O NMR spectroscopy. The conformational analysis was achieved by the application of 3J(C,H) coupling constants, NOESY responses and ab initio calculations. The preferred ground‐state conformers (twisted envelope‐A, twisted envelope‐B for 6 and twisted envelope‐A, envelope‐B for 7 ) were obtained as global minima of the theoretical ab initio MO study and also the examination of the 17O and 13C chemical shifts, calculated for the global minima structures of the sulfone isomers by the GIAO method. Analogous results, obtained for the sulfoxide isomers ( 4, 5 ), not only led to the preferred conformers but also gave evidence for the trans arrangement of the 2‐Ph group and the oxygen atom of the S?O group. Chemical shift differences between the isomers, sulfoxides and sulfones were corroborated by ab initio calculations of the anisotropic effects of the oxirane ring and the S?O and SO2 groups. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

17.
High‐quality solid‐state 17O (I=5/2) NMR spectra can be successfully obtained for paramagnetic coordination compounds in which oxygen atoms are directly bonded to the paramagnetic metal centers. For complexes containing VIII (S=1), CuII (S=1/2), and MnIII (S=2) metal centers, the 17O isotropic paramagnetic shifts were found to span a range of more than 10 000 ppm. In several cases, high‐resolution 17O NMR spectra were recorded under very fast magic‐angle spinning (MAS) conditions at 21.1 T. Quantum‐chemical computations using density functional theory (DFT) qualitatively reproduced the experimental 17O hyperfine shift tensors.  相似文献   

18.
The nitroxide‐based free radical 2,2,6,6‐tetramethyl‐1‐piperidinyloxy (TEMPO) is a widely used polarizing agent in NMR signal amplification via dissolution dynamic nuclear polarization (DNP). In this study, we have thoroughly investigated the effects of 15N and/or 2H isotopic labeling of 4‐oxo‐TEMPO free radical on 13C DNP of 3 M [1‐13C] sodium acetate samples in 1 : 1 v/v glycerol : water at 3.35 T and 1.2 K. Four variants of this free radical were used for 13C DNP: 4‐oxo‐TEMPO, 4‐oxo‐TEMPO‐15N, 4‐oxo‐TEMPO‐d16 and 4‐oxo‐TEMPO‐15N,d16. Our results indicate that, despite the striking differences seen in the electron spin resonance (ESR) spectral features, the 13C DNP efficiency of these 15N and/or 2H‐enriched 4‐oxo‐TEMPO free radicals are relatively the same compared with 13C DNP performance of the regular 4‐oxo‐TEMPO. Furthermore, when fully deuterated glassing solvents were used, the 13C DNP signals of these samples all doubled in the same manner, and the 13C polarization buildup was faster by a factor of 2 for all samples. The data here suggest that the hyperfine coupling contributions of these isotopically enriched 4‐oxo‐TEMPO free radicals have negligible effects on the 13C DNP efficiency at 3.35 T and 1.2 K. These results are discussed in light of the spin temperature model of DNP. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
The crystals of the title new melaminium salt, 2,4,6‐tri­amino‐1,3,5‐triazin‐1‐ium acetate acetic acid solvate monohydrate, C3H7N6+·CH3COO?·CH3COOH·H2O, are built up from singly protonated melaminium residues, acetate anions, and acetic acid and water mol­ecules. The melaminium residues are interconnected by N—H?N hydrogen bonds to form chains along the [010] direction. These chains of melaminium residues form stacks aligned along the a axis. The acetic acid mol­ecules interact with the acetate anions via the H atom of their carboxylic acid groups and, together with the water mol­ecules, form layers that are parallel to the (001) plane. The oppositely charged moieties interact via multiple N—H?O hydrogen bonds that stabilize a pseudo‐two‐dimensional stacking structure.  相似文献   

20.
Oxidative cyclization of the sugar hydrazones ( 3a‐f ) derived from {7H‐1,2,4‐triazolo[1,5‐d]tetrazol‐6‐ylsulfanyl}acetic acid hydrazide ( 1 ) and aldopentoses 2a‐c or aldohexoses 2d‐f with bromine in acetic acid in the presence of anhydrous sodium acetate, followed by acetylation with acetic anhydride gave the corresponding 2‐(per‐O‐acetyl‐alditol‐l‐yl)‐5‐methylthio{7H‐1,2,4‐triazolo[1,5‐d]tetrazol‐6‐yl}‐1,3,4‐oxadiazoles ( 5a‐f ). Condensative cyclization of the sugar hydrazones ( 3a‐f ) by heating with acetic anhydride gave the corresponding 3‐acetyl‐2‐(per‐O‐acetyl‐alditol‐1‐yl)‐2,3‐dihydro‐5‐methylthio{7‐acetyl‐1,2,4‐triazolo[1,5‐d]tetrazol‐6‐yl}‐1,3,4‐oxadiazoles ( 11a‐f ). De‐O‐acetylation of the acyclo C‐nucleoside peracetates ( 5 and 11 ) with methanolic ammonia afforded the hydrazono lactones ( 7 ) and the acyclo C‐nucleosides ( 12 ), respectively. The structures of new oxadiazole derivatives were confirmed by analytical and spectral data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号