首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The extraction behavior of germanium(IV) from aqueous hydrochloric acid solution with N-n-octylaniline in xylene was investigated. Hydrochloric acid concentration higher than 9 M remained effective for quantitative extraction of germanium(IV). Phenylfluorone ion as a counter anion was used. More than 2% N-n-octylaniline provided quantitative extraction at 1 min equilibrium time and germanium(IV) was back extracted by 7 M ammonia. The method was free from the interference of a large number of metal ions and anions, except for Te(IV) and Sn(IV); this was avoided using the masking effect. Germanium(IV) was separated from associated elements in its binary mixture with Si(IV), Te(IV), Sb(III), Bi(III), Au(III), Cu(II), Zn(II), and its ternary mixture with Se(IV), Te(IV); Sb(III), Bi(III); and Au(III), Cu(II). The proposed method was applied to a synthetic sample containing associated metal ions. The results indicated that trace amounts of germanium(IV) could be separated effectively from higher amounts of other elements.__________From Zhurnal Analiticheskoi Khimii, Vol. 60, No. 5, 2005, pp. 463–467.Original English Text Copyright © 2005 by Sargar, Anuse.This article was submitted by the authors in English.  相似文献   

2.
Bandekar SV  Dhadke PM 《Talanta》1998,46(5):1181-1186
Solvent extraction of tin(IV) from hydrochloric acid media was carried out with 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester (PC-88A) in toluene. Tin(IV) was quantitatively extracted with 2.5x10(-2) M PC-88A in toluene from 0.1-0.3 M HCl when equilibrated for 5 min. Tin(IV) from the organic phase was stripped with 4 M HCl and determined spectrophotometrically by both the morin and pyrocatechol violet method. The nature of the extracted species was determined from the log-log plots. Various other diluents such as xylene, hexane and cyclohexane also gave quantitative extraction of tin. The metal loading capacity of the reagent was found to be 0-15 ppm of tin(IV). The extraction of tin(IV) was carried out in the presence of various ions to ascertain the tolerance limit of individual ions. Tin(IV) was successfully separated from commonly associated metal ions such as antimony(III), bismuth(III), lead(II), thallium(I), copper(II), nickel(II), etc. The method was extended for determination of tin in real samples.  相似文献   

3.
Donaldson EM  Mark E 《Talanta》1982,29(8):663-669
The chloroform extraction of 30 elements (Fe, Co, Ni, Zn, Cd, Ge, Sn, V, As, Sb, Bi, Cu, Ag, Au, Mn, Re, Ga, In, Tl, Se, Te, Cr, Mo, U, Pt, Pd, Rh, Ir, Ru and Ce) from 0.1-8M sulphuric acid in the presence of potassium ethyl xanthate has been studied. Pd(II), Bi, As(III), Sb(III), Se(IV) and Te(IV) are completely extracted and Au(III) is largely extracted over the range of acid concentration investigated. Fe(II), Tl(I), Rh(III) and Cr(VI) are only slightly extracted and Se(VI), Te(VI), Ru(III), Cr(III), Mn(II), Zn, Ce(IV), Ir(IV) and Ge(IV) are not extracted at all. Depending on the acid concentration, the remaining elements are all partly extracted. Results are compared with those obtained in an earlier study of the extraction of xanthate complexes from hydrochloric acid media. The processes involved in the formation of some xanthate complexes and potential analytical separations are discussed.  相似文献   

4.
Donaldson EM 《Talanta》1976,23(6):411-416
The chloroform extraction of 32 elements (Fe, Co, Ni, Zn, Cd, Ge, Sn, Pb, V, As, Sb, Bi, Cu, Ag, Au, Mn, Re, Ga, In, Tl, Ce, Se, Te, Cr, Mo, U, Pt, Pd, Rh, Ir, Ru and Os) from O.1-10M hydrochloric acid media in the presence of potassium ethyl xanthate has been studied. The oxidation states in which some elements react, and potential analytical separations, are discussed. Pd(II), As(III) and Se(IV) are completely extracted as ethyl xanthate complexes, Te(IV) is almost completely extracted, and Au(III) is largely extracted over the range of acid concentration investigated. Mn(II), Zn, Rh(III), Ir(IV), Ru(III), Os(IV), Cr(III), Cr(VI), Ce(III) and Ce(IV) are not extracted. Ge is partly extracted from 6-10M media as the chloro-complex. Depending on the acid concentration, the remaining elements are all partially extracted as xanthate complexes.  相似文献   

5.
Hualing D  Zhide H 《Talanta》1989,36(6):633-637
The ion flotation of 31 metal ions in hydrochloric/nitric acid solution with the cationic surfactant cetylpyridinium chloride was investigated. A 25-ml portion of 0.27-2.87 x 10(-4)M metal ion and 1.8-6.0 x 10(-4)M cetylpyridinium chloride solution in 0.17-3.4M acid mixture ([HCl]:[HNO(3)] = 2.4:1) was subjected to flotation in a cell, 22.5 cm high and 4.0 cm in diameter, for 5 min, with nitrogen bubbles. Ir(IV), Pt(IV), Ge(IV), Sn(IV), Bi(III), Au(III), Tl(III), Pd(II) and Sn(II) were floated from solution in 95-100% yield; Ru(III), Rh(III), Ir(III), Hg(II), Ag(I) and Tl(I) were partly floated, while Cr(VI), Ti(IV), Zr(IV), Ga(III), In(III), Fe(III), Sb(III), Al(III), Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), CD(II) and Pb(II) were floated with less than 20% yield. The flotation behaviour of these metal ions in the mixed acid system was compared with that in hydrochloric acid. The flotation is more efficient in the mixed acid system.  相似文献   

6.
Strelow FW 《Talanta》1980,27(3):231-236
Gallium can be separated from Zn, Cu(II), In, Cd, Pb(II), Bi(III), Au(III), Pt(IV), Pd(II), Tl(III), Sn(IV) and Fe(III) by elution of these elements with 0.50M hydrobromic acid in 80% acetone medium, from a column of AG50W-X4 cation-exchange resin. Gallium is retained and can be eluted with 3M hydrochloric acid. Separations are sharp and quantitative except for iron(III) which shows extensive tailing. With 0.20M hydrobromic acid in 80% acetone as eluting agent, all the species above except iron(III) and copper(II) can be separated from gallium with very large separation factors. Only a 1-g resin column and small elution volumes are required to separate trace amounts and up to 0.5 mmole of gallium from more than 1 g of zinc or the other elements. Hg(II), Rh(III), Ir(IV), Se(IV), Ge(IV), As(III) and Sb(III) have not been investigated, but should be separated together with zinc according to their known distribution coefficients. Relevant elution curves, results for the analysis of synthetic mixtures and for amounts of some elements remaining in the gallium fraction are presented.  相似文献   

7.
Strelow FE  Wienert CH  van der Walt TN 《Talanta》1974,21(11):1183-1191
Indium can be separated from Zn, Pb(II), Ga, Ca, Be, Mg, Ti(IV), Mn(II), Fe(III), Al, U(VI), Na, Ni(II) and Co(II) by selective elution with 0.50M hydrochloric acid in 30% aqueous acetone from a column of AG50W-X8 cation-exchange resin, all the other elements being retained by the column. Lithium is included in the elements retained by the column when 0.35M hydrochloric acid in 45% aqueous acetone is used for eluting indium, but the elution of indium is slightly retarded. Ba, Sr, Zr, Hf, Th, Sc, Y, La and the lanthanides, Rb and Cs should also be retained according to their distribution coefficients. Cd, Bi(III), Au(III), Pt(IV), Pd(II), Rh(III), Mo(VI) and W(VI) can be eluted with 0.20M hydrobromic acid in 50% aqueous acetone before the elution of indium, and Ir(III), Ir(IV), As(III), As(V), Se(IV), Tl(III), Hg(II), Ge(IV), Sb(III) and Sb(V), though not investigated in detail, should accompany these elements. Relevant distribution coefficients and elution curves and results for analyses of synthetic mixtures of indium with other elements are presented.  相似文献   

8.
Extraction of Au(III), Pt(IV), and Pd(II) ions from hydrochloric acid media with solutions of two bis(aminophosphonates), such as N,N-bis(dipentoxyphosphorylmethyl)octylamine and N,N′-bis[[(dioctyloxyphosphoryl)methyl]butylamine], in chloroform and xylene was investigated. Both these extractants proved to be highly effective for Au(III) ions in a wide acidity range, which allows these ions to be separated from other noble metal ions with a high degree of selectivity. At the same time, Pt(IV) and Pd(II) ions cannot be separated from one another with the extractants studied. The selectivity of their separation from Fe(III), Cu(II), Co(II), and Ni(II) metal ions is, too, not high. The reasons for these results lie in the specific structural features of the extractants, which predetermine the extraction mechanism.  相似文献   

9.
Kirkbright GF  Saw CG  West TS 《Talanta》1969,16(1):65-73
A study of the low-temperature fluorescence characteristics of the ions of 55 elements in concentrated hydrochloric acid is reported. The spectral characteristics, effects of hydrochloric acid concentration and time, calibration linearity and sensitivity for Sb(III), Bi, Ce(III), Pb, Te(IV), Tl(I) and Sn(IV) have been investigated. Uranium(VI), copper(I) and antimony(V) also exhibit fluorescence under these conditions. The detection limits using a commercial spectrofluorimeter with modified sample cells are Sb(III), 10(-6)M; Bi(III), 10(-8)M; Ce(III), 10(-7)M; Pb, 10(-8)M; Te(IV), 10(-7)M; Tl(I), 10(-6)M; Sn(IV), 10(-4)M. The suitability of some inorganic acid solvents for clear glass formation at -196 degrees is also investigated.  相似文献   

10.
Victor AH  Strelow FW 《Talanta》1981,28(4):207-214
Zinc and lead can be separated from Cd, Bi(III), In and V(V) by eluting these elements with 0.2M hydrochloric acid in 60% acetone from a column of AG50W-X8 cation-exchange resin, zinc and lead being retained. Mercury(II), Tl(III), As(III), Au(III), Sn(IV), Mo(VI), W(VI) and the platinum metals have not been investigated quantitatively, but from their distribution coefficients, should also be eluted. Vanadium(V), Mo(VI) and W(VI) require the presence of hydrogen peroxide. Zinc and lead can be eluted with 0.5M hydrochloric acid in 60% acetone or 0.5M hydrobromic acid in 65% acetone and determined by AAS; the alkali and alkaline-earth metal ions, Mn(II), Co, Ni, Cu(II), Fe(III), Al, Ga, Cr(III), Ti(IV), Zr, Hf, Th, Sc, Y, La and the lanthanides are retained on the column, except for a small fraction of copper eluted with zinc and lead. Separations are sharp and quantitative. The method has successfully been applied to determination of zinc and lead in three silicate rocks and a sediment.  相似文献   

11.
N-Benzoyl-N-phenylhydroxylamine (BPHA) and cupferron are compared in the liquid-liquid extraction of tin and antimony. As in their precipitation reactions tin(II) and tin(IV) behave similarly with BPHA and differently with cupferron. Both reagents behave similarly in extraction of antimony (III), except at high acidity when cupferron or its decomposition products prevent extraction which otherwise occurs into chloroform alone. Separations of Sn, Sb, As and Bi are discussed for extractions from hydrochloric and perchloric acid systems with BPHA. The tin product extracted with BPHA from dilute hydrochloric acid appears to be identical with that precipitated in gravimetric analysis; infrared spectral evidence shows the latter to contain tin(IV). Other precipitation reactions of BPHA in the presence of anions other than chloride and some solubility measurements are also reported.  相似文献   

12.
Chang X  Su Q  Liang D  Wei X  Wang B 《Talanta》2002,57(2):253-261
Poly(acryldinitrophenylamidrazone-dinitroacrylphenylhydrazine) chelating fiber was synthesized from polyacrylonitrile fiber and used for enrichment and separation for traces of Au(III), Ru(III), In(III), Bi(III), Zr(IV), V(V), Ga(III) and Ti(IV) ions from solution samples. The acidity, rate, re-use, capacity and interference on the adsorption of ions on the chelating fiber as well as the conditions of desorption of these ions from the chelating fiber were investigated by means of inductively coupled plasma optical emission spectrometry. The results show that 10-100 ngml(-1) of Au(III), Ru(III), In(III), Bi(III), Zr(IV), V(V), Ga(III) and Ti(IV) ions can be quantitatively enriched by the chelating fiber at a 2 mlmin(-1) of flow rate in the range pH 4-5, and desorbed quantitatively with 20 ml of 5 M HCl for In(III), Bi(III), Zr(IV), V(V), Ga(III), Ti(IV) and 20 ml of 4 M HCl+2% CS(NH(2))(2) solution for Au(III), Ru(III) (with recovery>95%). 50- to 500- fold excesses of Fe(III), Al(III), Mg(II), Mn(II), Ca(II), Cu(II), Ni(II) ions cause little interference in the concentration and determination of analyzed ions. When the fiber was reused for 8 times, the recoveries of the above ions enriched by the fiber were still over 87%. The relative standard deviations (RSDs) for the enrichment and determination of 10 ngml(-1) Au, Ru, In, Bi, Ga and 1 ngml(-1) Zr, V, Ti were lower than 3.0%. The results obtained for these ions in real solution samples by this method were basically in agreement with the given values with average errors of less than 6.3%. FT-IR spectra show that existence of NNCNHNH, OCNHNH and NO(2) functional groups are verified in chelating fiber, and Au(III) or Ru(III) is mainly combined with nitrogen (or oxygen) of the groups to form a chelate complex.  相似文献   

13.
The extraction of Au(III), Pt(IV), and Pd(II) ions from aqueous hydrochloric acid solutions with solutions of bis(2-ethylhexyl) N-butyl-N-octylaminomethylphosphonate in chloroform and xylene was studied. The recovery of the noble metal ions is the most efficient at low acidities of the aqueous solution, with a high selectivity of separation from the concomitant Fe(III), Cu(II), Ni(II), and Co(II) ions.  相似文献   

14.
Ruthenium(III) has been efficiently extracted from 0.05 M sodium succinate at pH 9.5 by 2-octylaminopyridine in xylene and stripped with aqueous 10% (w/v) thiourea solution and determined spectrophotometrically. Various parameters viz., pH, weak acid concentration, reagent concentration, stripping agents, contact time, loading capacity, aq.: org. volume ratio, solvent has been thoroughly investigated for quantitative extraction of ruthenium(III). The utility of method was analyzed by separating the ruthenium(III) from binary mixture along with the base metals like Cu(II), Ag(I), Fe(II), Co(II), Bi(III), Zn(II), Ni(II), Se(IV), Te(IV), Al(III) and Hg(II) as well as platinum group metals (PGMs). Ruthenium(III) was also separated from ternary mixtures like Os(VIII), Pd(II); Pd(II), Pt(IV); Pd(II), Au(III); Pd(II), Cu(II); Fe(II), Cu(II); Ni(II), Cu(II); Co(II), Ni(II); Se(IV), Te(IV); Rh(III), Pd(II); Fe(III), Os(VIII). The stoichiometry 1: 2: 1 (metal: succinate: extractant) of the proposed complex was determined by slope analysis method by plotting graph of logD [Ru(III)] versus logC [2-OAP] and logD [Ru(III)] versus logC [succinate]. The interference of various cations and anions has been studied in detail and the statistical evaluations of the experimental results are reported. The method was successfully applied for the analysis of ruthenium in various catalysts, synthetic mixtures corresponding to the composition of alloys and minerals.  相似文献   

15.
Sargar BM  Anuse MA 《Talanta》2001,55(3):469-478
N-n-Octylaniline in xylene is used for extractive separation of tellurium(IV) from hydrochloric acid media. Tellurium(IV) is extracted quantitatively with the 3% reagent in xylene from 5.5 to 7.5 M hydrochloric acid. It is stripped from organic phase with 1:1 ammonia and estimated spectrophotometrically with pyrimidine-2-thiol (4'-bromoPTPT). The effects of metal ion, acids, reagent concentration, diluents and various foreign ions have been investigated. The log-log plots of distribution ratio (D(Te(IV))) versus N-n-octylaniline concentration indicate that the nature of extracted species is [(RR'NH(2)(+))(2) TeCl(6)(2-)](org). The method affords binary separation of tellurium(IV) from gold(III), selenium(IV), bismuth(III), copper(II), lead(II), antimony(III), germanium(IV) and is applicable to the analyses of synthetic mixture containing associated metal ions and alloy samples. The method is simple, selective, rapid and accurate.  相似文献   

16.
Yatirajam V  Dhamija S 《Talanta》1977,24(8):497-501
Phosphotungsten blue is produced by tin(II) reduction of tungstate solution complexed with phosphate at a w/w ratio of W/P = 5, in 4M hydrochloric acid medium, and extracted with isoamyl alcohol; thus tungsten is separated from Fe(III), Ni, Co, Cr(III), V(V), As(V), Sb(III), Bi, Si, U(VI), Ca and Cu(II). In presence of bismuth (0.5 mg/ml), 99.7% W is separated in a single extraction. After alkaline back-extraction, tungsten is determined spectrophotometrically as phosphotungsten blue; it is measured at 930 nm in aqueous solution or at 900-960 nm after isoamyl alcohol extraction, the Beer's law ranges being 0.08-0.6 and 0.16-0.72 mg/ml respectively. The methods are shown to give satisfactory results in the analysis of practical samples containing some milligrams of tungsten.  相似文献   

17.
The extraction characteristics of isooctyl thioglycolate (IOTG), a chelating agent, in various diluents has been studied with respect to the metal ions, tin(IV) and antimony(III), in hydrochloric acid medium. It is concluded that antimony(III) can be separated from tin(IV) with 85% yield and with a decontamination factor of at least 1·105 using IOTG diluted with petroleum ether and 3M HCl medium. Tin(IV) can be separated conveniently from antimony(III) in 2M HCl with 95% yield and with a decontamination factor greater than 7·105 using IOTG diluted with carbon tetrachloride.  相似文献   

18.
Lokhande TN  Anuse MA  Chavan MB 《Talanta》1998,47(4):823-832
N-n-octylaniline in xylene is used for the extractive separation of platinum(IV) from acidic media. Platinum(IV) was extracted quantitatively with 10 ml of 3% reagent in xylene from 0.5 to 10 and 2.5 to 10 M hydrochloric and sulphuric acid, respectively. It was stripped from organic phase with water and estimated photometrically with stannous chloride. The effect of metal ion, acids, reagent concentration and of various foreign ions has been investigated. The method affords binary separation of platinum(IV) from iron(III), cobalt(II), nickel(II) and copper(II), and is applicable to the analysis of synthetic mixtures and alloys. The method is fast, accurate and precise.  相似文献   

19.
Extraction processes of indium(III) with 2-octylaminopyridine (2-OAP) from media of various complexing ability, succinate and salicylate, in chloroform have been elucidated. The ion-pair complex has also quantitative extraction in xylene and 1,2-dichloroethane. Indium(III) from organic phase was stripped with 1.0 M hydrochloric acid and determined complexometrically with EDTA. The stoichiometry of the extracted species was found out on the basis of slope analysis. The extraction of indium(III) proceeds by an anion exchange mechanism and the extracted species is [RR′NH2 +In(succinate)2 -](org). Temperature dependence of the extraction equilibrium constant was also examined to estimate the apparent thermodynamic functions (ΔH, ΔG and ΔS) for extraction reaction. It is possible to separate indium(III) from Zn(II), Cd(II), Pb(II), Hg(II), Bi(III), Tl(I), Tl(III), Ga(III), Al(III), Te(IV), Se(IV), Sb(III), Fe(III) and Sn(IV). The method is simple, rapid and reproducible and can be used to determine the indium from samples like alloys.  相似文献   

20.
Donaldson EM  Wang M 《Talanta》1986,33(1):35-44
The methyl isobutyl ketone extraction of 15 elements (Cu, Ag, Zn, Cd, In, Tl, Ge, Sn, As, Sb, Bi, Se, Te, Mo and Pd) as iodide complexes from 0.1-5 M sulphuric acid/0.01-0.5M potassium iodide media has been studied. At the optimum potassium iodide concentrations, and a 1:2 v v ratio of organic to aqueous phase, Cu(II), Ag, Cd, In(III), Tl(III), Sb(III), Bi, Te(IV) and palladium(II) are completely extracted in a single step from 1-5M sulphuric acid. All these elements except palladium are also quantitatively extracted from 0.05-0.5M iodide/2M sulphuric acid. Zn, Sn(IV) and As(III) are completely extracted at high acid and iodide concentrations, and at the highest concentrations of acid and iodide investigated, Ge is partly extracted and Mo(VI) is slightly extracted. The extraction of Se(IV) is incomplete because of its reduction to the elemental state by iodide. The back-extraction of the elements has also been investigated and the forms in which they are extracted and potential analytical separations and interferences are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号