首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The comparative epoxidation of 2‐substituted isoflavones 9–16 has been conducted by the utilization of three different protocols, viz. epoxidation with isolated dimethyldioxirane (Method A), with sodium hypochlorite (Method B), and with alkaline hydrogen peroxide (Method C), to afford epoxides 17–24 . Best results have been obtained with Method C (Weitz‐Scheffer epoxidation). The structures of epoxides have been assigned on the basis of nmr spectral and mass spectral data.  相似文献   

2.
New pyrano[2′,3′: 5,6]chromeno[4,3‐b]quinolin‐4‐ones have been synthesized by intramolecular aza‐Diels? Alder reaction of the azadienes generated in situ from aryl amines and 8‐formyl‐7‐(prop‐2‐ynyl)2,3‐disubstituted chromones using CuFe2O4 nanoparticles as a catalyst in DMSO at 80–90° in good‐to‐excellent yields. Particularly valuable features of this methodology include simple implementation, inexpensive and reusable catalyst, and good yields. The structures were established by spectroscopic data and further confirmed by X‐ray diffraction analysis of one of the products.  相似文献   

3.
Sulfur atom of the trans, cis‐ and trans, trans‐epoxides 1 of (Z)‐3‐arylidene‐1‐thioflavanones have been oxidized with dimethyldioxirane to afford the appropriate sulfoxides 2 and sulfones 3 depending on the amount of oxidant used.  相似文献   

4.
Activation of ansa‐zirconocenes of the type Rac [Zr{1‐Me2Si(3‐R‐(η5‐C9H5))(3‐R′‐(η5‐C9H5))}Cl2] [R = Et, R′ = H ( 1 ); R = Pr, R′ = H ( 2 ); and R = Et, R′ = Pr ( 3 ), R, R′ = Me ( 4 ) and R, R′ = Bu ( 5 )] by MAO has been studied by UV–visible spectroscopy. Compounds 1–3 have been tested in the polymerization of ethylene at different Al:Zr ratios. UV–vis spectroscopy was used to determine a correlation between the electronic structures of ( 1–5 ) and their polymerization activity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
The use of dimethyldioxirane (DMD) as the epoxidizing agent for polyunsaturated fatty acids was investigated. With fatty acid methyl esters, this is a convenient method for avoiding acidic conditions, using different solvents, and simplifying the isolation procedures, with less contamination due to by‐products. The reagent was also tested with free fatty acids in water. In this case, the supramolecular organization of fatty acids influenced the reaction outcome, and the epoxidation showed interesting regioselective features. The C?C bonds closest to the aqueous‐micelle interface is the most favored for the interaction with dimethyldioxirane. The preferential epoxidation of linoleic acid (= (9Z,12Z)‐octadeca‐9,12‐dienoic acid) to the 9,10‐monoepoxy derivative was achieved, with a high yield and 65% regioselectivity. In case of arachidonic acid (= (5Z,8Z,11Z,14Z)‐eicosa‐5,8,11,14‐tetraenoic acid) micelles, the regioselective outcome with formation of the four possible monoepoxy isomers was studied under different conditions. It resulted to be a convenient synthesis of ‘cis‐5,6‐epoxyeicosatrienoic acid’ (= 3‐[(2Z,5Z,8Z)‐tetradeca‐2,5,8‐trienyl]oxiran‐2‐butanoic acid), whereas in reverse micelles, epoxidation mostly gave ‘cis‐14,15‐epoxyeicosatrienoic acid (= (5Z,8Z,11Z)‐13‐(3‐pentyloxiran‐2‐yl)trideca‐5,8,11‐trienoic acid).  相似文献   

6.
A series of Al(III) and Sn(II) diiminophosphinate complexes have been synthesized. Reaction of Ph(ArCH2)P(?NBut)NHBut (Ar = Ph, 3 ; Ar = 8‐quinolyl, 4 ) with AlR3 (R = Me, Et) gave aluminum complexes [R2Al{(NBut)2P(Ph)(CH2Ar)}] (R = Me, Ar = Ph, 5 ; R = Me, Ar = 8‐quinolyl, 6 ; R = Et, Ar = Ph, 7 ; R = Et, Ar = quinolyl, 8 ). Lithiated 3 and 4 were treated with SnCl2 to afford tin(II) complexes [ClSn{(NBut)2P(Ph)(CH2Ar)}] (Ar = Ph, 9 ; Ar = 8‐quinolyl, 10 ). Complex 9 was converted to [(Me3Si)2NSn{(NBut)2P(Ph)(CH2Ph)}] ( 11 ) by treatment with LiN(SiMe3)2. Complex 11 was also obtained by reaction of 3 with [Sn{N(SiMe3)2}2]. Complex 9 reacted with [LiOC6H4But‐4] to yield [4‐ButC6H4OSn{(NBut)2P(Ph)(CH2Ph)}] ( 12 ). Compounds 3–12 were characterized by NMR spectroscopy and elemental analysis. The structures of complexes 6 , 10 , and 11 were further characterized by single crystal X‐ray diffraction techniques. The catalytic activity of complexes 5–8 , 11 , and 12 toward the ring‐opening polymerization of ε‐caprolactone (CL) was studied. In the presence of BzOH, the complexes catalyzed the ring‐opening polymerization of ε‐CL in the activity order of 5 > 7 ≈ 8 > 6 ? 11 > 12 , giving polymers with narrow molecular weight distributions. The kinetic studies showed a first‐order dependency on the monomer concentration in each case. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4621–4631, 2006  相似文献   

7.
Three new lycopodium alkaloids, huperserramines A–C ( 1 – 3 , resp.), along with 15 known ones, lycopodine‐6α,11α‐diol ( 4 ), lycoposerramine H ( 5 ), lycoposerramine I ( 6 ), lycopodine‐6α‐ol ( 7 ), lycoposerramine M ( 8 ), diphaladine A ( 9 ), lycoposerramine K ( 10 ), lycoposerramine W ( 11 ), huperzine M ( 12 ), luciduline ( 13 ), phlegmariuine N ( 14 ), huperzine A ( 15 ), huperzine B ( 16 ), lycodine ( 17 ), and lycoposerramine R ( 18 ), were isolated from the whole plant of Huperzia serrata. Their structures were established by spectroscopic methods, including 2D‐NMR and MS analyses. All the isolates were evaluated for their inhibitory effects on acetylcholinesterase (AChE) and α‐glucosidase. As a result, lycopodine‐6α,11α‐diol ( 4 ) exhibited more potent α‐glucosidase inhibitory activity (IC50 148±5.5 μM ) than the positive control acarbose (IC50 376.3±2.7 μM ).  相似文献   

8.
The oxidation of (‐)‐tabersonine ( 1 ) with dimethyldioxirane (DMD) in neutral and acidic medium gave 16‐hydroxytabersonine‐N‐oxide ( 3 ) and the didehydrovincamine isomers 4 and 5 , respectively. (+)‐14,15‐Didehydro‐quebrachamine ( 7 ) furnished the hydroxyindolenine 9 , and the pentacyclic derivative 11 . (+)‐Quebrachamine ( 8 ) and DMD in neutral medium gave (7S,20S)‐(+)‐rhazidigenine ( 12 ) which was converted to (2R,7S,20S)‐(+)‐rhazidine ( 13b ) with hydrochloric acid.  相似文献   

9.
Three novel curcuminoids, curcumaromins A–C ( 1 – 3 , resp.), along with a known compound, longiferone B ( 4 ) were isolated from Curcuma aromatica Salisb . The structures of the new compounds were elucidated as (1E,4Z,6E)‐5‐hydroxy‐7‐{4‐hydroxy‐3‐[(1R*,6R*)‐3‐methyl‐6‐(propan‐2‐yl)cyclohex‐2‐en‐1‐yl)phenyl}‐1‐(4‐hydroxyphenyl)hepta‐1,4,6‐trien‐3‐one ( 1 ), 2,3‐dihydro‐2‐(4‐hydroxyphenyl)‐6‐[(E)‐2‐(4‐hydroxyphenyl)ethenyl]‐5‐[(1R*,6R*)‐3‐methyl‐6‐(propan‐2‐yl)cyclohex‐2‐en‐1‐yl]‐4H‐pyran‐4‐one ( 2 ), and (1E,6E)‐1,7‐bis(4‐hydroxyphenyl)‐4‐[(1R*,6R*)‐3‐methyl‐6‐(propan‐2‐yl)cyclohex‐2‐en‐1‐yl]hepta‐1,6‐diene‐3,5‐dione ( 3 ) on the basis of spectroscopic analysis. Curcumaromins A–C ( 1 – 3 ) represented the first examples of menthane monoterpene‐coupled curcuminoids. The known compound, longiferone B ( 4 ), was the first daucane sesquiterpene isolated from the genus Curcuma.  相似文献   

10.
Carba‐closo‐dodecaborate anions with two functional groups have been synthesized via a simple two‐step procedure starting from monoamino‐functionalized {closo‐1‐CB11} clusters. Iodination at the antipodal boron atom provided access to [1‐H2N‐12‐I‐closo‐1‐CB11H10]? ( 1 a ) and [2‐H2N‐12‐I‐closo‐1‐CB11H10]? ( 2 a ), which have been transformed into the anions [1‐H2N‐12‐RC?C‐closo‐1‐CB11H10]? (R=H ( 1 b ), Ph ( 1 c ), Et3Si ( 1 d )) and [2‐H2N‐12‐RC?C‐closo‐1‐CB11H10]? (R=H ( 2 b ), Ph ( 2 c ), Et3Si ( 2 d )) by microwave‐assisted Kumada‐type cross‐coupling reactions. The syntheses of the inner salts 1‐Me3N‐12‐RC?C‐closo‐1‐CB11H10 (R=H ( 1 e ), Et3Si ( 1 f )) and 2‐Me3N‐12‐RC?C‐closo‐1‐CB11H10 (R=H ( 2 e ), Et3Si ( 2 f )) are the first examples for a further derivatization of the new anions. All {closo‐1‐CB11} clusters have been characterized by multinuclear NMR and vibrational spectroscopy as well as by mass spectrometry. The crystal structures of Cs 1 a , [Et4N] 2 a , K 1 b , [Et4N] 1 c , [Et4N] 2 c , 1 e , and [Et4N][1‐H2N‐2‐F‐12‐I‐closo‐1‐CB11H9]?0.5 H2O ([Et4N ]4 a ?0.5 H2O) have been determined. Experimental spectroscopic data and especially spectroscopic data and bond properties derived from DFT calculations provide some information on the importance of inductive and resonance‐type effects for the transfer of electronic effects through the {closo‐1‐CB11} cage.  相似文献   

11.
The benzo[a]heptalene formation from 4‐[(R‐sulfonyl)acetyl]heptalene‐5‐carboxylates 15 and 5‐[(R‐sulfonyl)acetyl]heptalene‐4‐carboxylates 16 (R=Ph or morpholino) in the presence of R′SO2CH2Li and BuLi has been investigated (Scheme 6). Only the sulfonyl moiety linked to the C?O group at C(4) of the heptalene skeleton is found at C(3) of the formed benzo[a]heptalene‐2,4‐diols 3 in accordance with the general mechanism of their formation (Scheme 3). Intermediates that might rearrange to corresponding 2‐sulfonylbenzo[a]heptalene‐1,3‐diols lose HO? under the reaction conditions to yield the corresponding cyclopenta[d]heptalenones of type 11 (Schemes 6 and 7). However, the presence of an additional Me group at C(α) of the lithioalkyl sulfones suppresses the loss of HO?, and 4‐methyl‐2‐sulfonylbenzo[a]heptalene‐1,3‐diols of type 4c have been isolated and characterized for the first time (Schemes 8 and 10). A number of X‐ray crystal‐structure analyses of starting materials and of the new benzo[a]heptalenes have been performed. Finally, benzo[a]heptalene 4c has been transformed into its 1,2,3‐trimethoxy derivative 23 , a benzo[a]heptalene with the colchicinoid substitution pattern at ring A (Scheme 11).  相似文献   

12.
In this work, a new methacrylate‐based hydrogen bonded side chain liquid crystalline polymer having chalcone moieties (HBCP) was prepared from poly(4‐(3‐(pyridin‐4‐yl)acryloyl) phenyl methacrylate) and 11‐(4‐cyanobiphenyl‐4(‐oxy) undekan‐1‐ol (LC11)) by molecular self‐assembly processes via hydrogen bond formation between nitrogen of the HBCP and hydroxyl group of the LC11. The formation of H bond was confirmed by using Fourier transform infrared (FTIR) spectroscopy. The phase transition temperatures and liquid crystalline phases of the HBCP were examined by DSC and POM measurements. The dielectric properties of HBCP have been determined by impedance analyzer within the frequency interval of 100 Hz–15 MHz. According to Cole–Cole plot, the equivalent circuit of the LC system has been found as a capacitor in parallel with a resistor. The resonance frequency, fr, of the R–C circuit has also been calculated as 1.59 MHz by phase angle versus frequency curve. The dielectric relaxation type of HBCP has been determined as nearly‐Debye type because the absorption coefficient, α, equals to 0.01655. From the conductivity point of view, HBCP displays dc conductivity at the low and high frequency regions that correspond to 100 Hz–12 kHz and 3.3 MHz–15 MHz, respectively. On the other hand, it has been revealed that the ac conductivity of the LC system investigated obeys Super Linear Power Law (SLPL) at the intermediate frequency domain. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
The first stereoselective total synthesis of (–)-3β, 4α-dihydroxy-β-dihydroagarofuran (1) and 3α, 4α-oxidoagarofuran (2) has been described. The key step is the epoxidation of α-agarofuran (6) with dimethyldioxirane.  相似文献   

14.
Novel 4‐ethynylphthaloyl amino acid esters carrying different terminal groups, 4‐ethynylphthaloyl glycine (1S,2R,5S)‐menthyl ester ( 1 ), 4‐ethynylphthaloyl glycine (1R,2S,5R)‐menthyl ester ( 2 ), 4‐ethynylphthaloyl L ‐leucine methyl ester ( 3 ), 4‐ethynylphthaloyl L ‐leucine (1S,2R,5S)‐menthyl ester ( 4 ), 4‐ethynylphthaloyl L ‐leucine (1R,2S,5R)‐menthyl ester ( 5 ) were synthesized and polymerized with a rhodium catalyst. Polymers with high molecular weights were obtained in 71–92% yields. The helical conformation of the polymers could be tuned by the chirality of the amino acid connected to the backbone, together with the chirality and bulkiness of the terminal pendent groups. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4183–4192, 2008  相似文献   

15.
Reactions of the substituted 2‐formyl chromones with aroylhydrazines gave corresponding 2‐(aroylhydrazonomethylidyne) chromones. Then 2‐(3′‐acetyl‐5′‐aryl‐2′,3′‐dihydro‐1′,3′,4′‐oxadiazol‐2′‐yl) chromones were prepared by these 2‐(aroylhydrazonomethylidyne) chromones under refluxing with Ac2O. All target compounds were characterized through elemental analysis and IR, 1H NMR, MS.  相似文献   

16.
Four new platinum(II) complexes [Pt(dpen)(bpy)](ClO4)2 ( 1 ) , [Pt(dpen)(phen)](ClO4)2 ( 2 ), [Pt(dpen)(dpq)](ClO4)2 ( 3 ) and [Pt(dpen)(dppz)](ClO4)2 ( 4 ) comprising of different N,N‐donor ligands, viz., 2,2′‐bipyridine (bpy), 1,l0‐phenanthroline (phen), dipyridoquinoxaline (dpq), dipyrido‐[3,2‐d:2¢,3¢‐f –phenazine] (dppz), and chiral ancillary ligand 1R,2R ‐1,2‐diphenylethylenediamine (dpen) have been synthesized and characterized. The interaction of these complexes 1–4 with calf‐thymus DNA (CT‐DNA) has been explored using absorption, circular dichroism spectral and cyclic voltammetric studies. The absorption spectrum of complex 4 with dppz ligand exhibits a major red shift with an overall hypochromic as well as a hyperchromic effect in the presence of DNA, other complexes ( 1 – 3 ) show only hypochromism. From these absorption spectral studies, the intercalative ability of the complexes follows the order as, 4  >  3  >  2  >  1 , which is further confirmed by CD and cyclic voltammetry measurements. CD spectral studies show that DNA becomes more A ‐like upon interaction with the complexes 1 & 2 but the complexes 3 & 4 bring about B ‐form to Z ‐ form DNA conformational transition. The DNA cleavage study of these Pt(II) complexes 1–4 carried out by gel electrophoresis revealed that complexes 1–4 can cleave super coiled (SC) pUC18 DNA efficiently into open circular form (form II) under hydrolytic and oxidative conditions.  相似文献   

17.
A series of new indanimine ligands [ArN?CC2H3(CH3)C6H2(R)OH] (Ar = Ph, R = Me ( 1 ), R = H ( 2 ), and R = Cl ( 3 ); Ar = 2,6‐i‐Pr2C6H3, R = Me ( 4 ), R = H ( 5 ), and R = Cl ( 6 )) were synthesized and characterized. Reaction of indanimines with Ni(OAc)2·4H2O results in the formation of the trinuclear hexa(indaniminato)tri (nickel(II)) complexes Ni3[ArN = CC2H3(CH3)C6H2(R)O]6 (Ar = Ph, R = Me ( 7 ), R = H ( 8 ), and R = Cl ( 9 )) and the mononuclear bis(indaniminato)nickel (II) complexes Ni[ArN?CC2H3(CH3)C6H2(R)O]2 (Ar = 2,6‐i‐Pr2C6H3, R = Me ( 10 ), R = H ( 11 ), and R = Cl ( 12 )). All nickel complexes were characterized by their IR, NMR spectra, and elemental analyses. In addition, X‐ray structure analyses were performed for complexes 7 , 10 , 11 , and 12 . After being activated with methylaluminoxane (MAO), these nickel(II) complexes can polymerize norbornene to produce addition‐type polynorbornene (PNB) with high molecular weight Mv (106 g mol?1), highly catalytic activities up to 2.18 × 107 gPNB mol?1 Ni h?1. Catalytic activities and the molecular weight of PNB have been investigated for various reaction conditions. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 489–500, 2008  相似文献   

18.
A series of 8‐(2,6‐dibenzhydryl‐4‐R‐phenylimino)‐5,6,7‐trihydroquinoline ligands have been prepared in which the nature of 4‐R substitutions vary from electron withdrawing to electron donating. The treatment with NiCl2.6H2O or (DME)NiBr2 afforded the corresponding complexes of nickel chloride (4‐R = Me Ni1 , Et Ni2 , tBu Ni3 , CHPh2 Ni4 , Cl Ni5 , and F Ni6 ) and nickel bromide (4‐R = Me Ni7 , Et Ni8 , tBu Ni9 , CHPh2 Ni10 , Cl Ni11 , and F Ni12 ). X‐ray diffraction study of complexes Ni3 , Ni6 , and Ni10 , revealed that Ni3.1/2H2O and Ni6.H2O adopted unsymmetrical and symmetrical chloride‐bridged dinuclear structures respectively, while Ni10.H2O is found as mononuclear specie forming distorted‐square planer geometry. In the presence of either diethylaluminum chloride (Et2AlCl) or modified methylaluminoxane (MMAO), all the nickel complexes ( Ni1–Ni12 ) displayed high activities (up to 1.91 × 106 g(PE) mol (Ni)−1h−1. Highly branched polyethylene waxes with low molecular weights (Mw ≤ 2.6 kg/mol) and narrow molecular weights distributions (Mw/Mn ≤ 1.96) incorporated with vinylene and vinyl groups were obtained. The effects of 4‐R substitutions to the nickel chloride and bromide pre‐catalysts and reaction conditions on the catalytic performance and the properties of the resulting polyethylene were the subject of a detail investigation. The positive influences of using electron‐withdrawing 4‐R substitutions and bromides were observed. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1269–1281  相似文献   

19.
The polysilanes [RMe2Si(CH2)x(Me)Si]n [x = 2, 3; R = 2‐Fu ( 1, 2 ), 5‐Me‐2‐Fu ( 3, 4 )] bearing furyl‐substituted carbosilyl side chains have been synthesized by dehalocondensation reaction (Wurtz coupling) of the corresponding carbosilanes using sodium dispersion in refluxing toluene. On the other hand, analogous polysilanes with appended thienyl groups [x = 2, 3; R = 2‐Th ( 5, 6 ), 4‐Me‐2‐Th ( 7, 8 )] are only accessible by the reaction of the corresponding carbosilane precursors under mild Wurtz coupling conditions (THF, RT). These polysilanes reveal monomodal molecular weight distribution with Mw/PDI = 3.3–5.4 × 104/1.22–1.47 ( 1–4 ) and 9.1–14.4 × 104/1.45–1.61 ( 5–8 ) and are characterized by FT‐IR, multinuclear (1H, 13C{1H}, 29Si{1H}) NMR, and UV/PL spectral studies as well as thermogravimetric analysis (TGA). Preliminary studies on the reactivity of polysilane 2 with palladium acetate (toluene, RT) reveal the formation of spherical palladium nanoparticles of size 8.2 ± 0.6 nm, which remain stable in solution for several weeks. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7816–7826, 2008  相似文献   

20.
A new series of platinum(II) complexes with tridentate ligands 2,6‐bis(1‐alkyl‐1,2,3‐triazol‐4‐yl)pyridine and 2,6‐bis(1‐aryl‐1,2,3‐triazol‐4‐yl)pyridine (N7R), [Pt(N7R)Cl]X ( 1 – 7 ) and [Pt(N7R)(C?CR′)]X ( 8 – 17 ; R=n‐C4H9, n‐C8H17, n‐C12H25, n‐C14H29, n‐C18H37, C6H5, and CH2‐C6H5; R′=C6H5, C6H4‐CH3p, C6H4‐CF3p, C6H4‐N(CH3)2p, and cholesteryl 2‐propyn‐1‐yl carbonate; X=OTf?, PF6?, and Cl?), has been synthesized and characterized. Their electrochemical and photophysical properties have also been studied. Two amphiphilic platinum(II)? 2,6‐bis(1‐dodecyl‐1,2,3‐triazol‐4‐yl)pyridine complexes ( 3‐Cl and 8 ) were found to form stable and reproducible Langmuir–Blodgett (LB) films at the air/water interface. These LB films were characterized by the study of their surface‐pressure–molecular‐area (π–A) isotherms, XRD, and IR and polarized‐IR spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号