首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The enzymatic surface degradation behavior of the blend films of polystyrene (PS) with poly[((R)‐3‐hydroxybutyrate)‐co‐((L )‐3‐hydroxyvalerate)] (P(3HB‐co‐3HV)) or poly((R)‐3‐hydroxybutyrate (P(3HB)) were investigated using atomic force microscopy (AFM). It was found that the blends of PS with P(3HB‐co‐3HV) or P(3HB) are immiscible in both the amorphous and melt states. The degradation of both P(3HB‐co‐HV) and P(3HB) was significantly retarded at the initial stages of enzymatic attack by hydrophobic PS (up to 20 wt.‐%).  相似文献   

3.
Acceleration of the biodegradation of poly(L -lactide) (PLA) was studied. We found that the degradation rate of high molecular weight (1.3×105) PLA film was greatly increased by the addition of gelatin into the culture medium of the microorganisms. 100 mg of PLA film was almost completely degraded by the fungus, Tritirachium album (eukaryotic microorganisms), and by an actinomycete, Saccharothrix waywayandensis (prokaryotic microorganisms). In addition to gelatin, various insoluble proteins, peptides and amino acids also accelerate the biodegradation of PLA. Silk fibroin was the best inducer for the production of PLA-degrading enzymes of an actinomycete, Amycolatopsis orientalis.  相似文献   

4.
This paper reports computational simulations at two different scales employed to investigate the hydrolytic degradation of two homopolyesters: polyglycolide, PGA and poly(L-lactide), PLLA. Atomistic bulk models were used to investigate the dry and various hydrated states of the two systems. In addition, the first moments of contact between the polymers and water were studied employing atomistic interface models. A higher affinity of water to polyglycolide in comparison with poly(L-lactide) was observed, while diffusion of water was found to be lower in the first polymer. Quantum chemical calculations for the first step of the water-assisted hydrolysis revealed a higher resistance to hydrolytical scission of the L-lactyl units in comparison to glycolyl units.  相似文献   

5.
Levoglucosenone (LGO) is a cellulose-derived molecule that is present commercially on a multi-ton/year scale. Taking advantage of the α,β-conjugated ketone of LGO, a new citronellol-containing 5-membered lactone (HBO-citro) was synthesized through a one-pot two-step pathway involving oxa-Michael addition and Baeyer-Villiger oxidation. The solvent-free treatment of HBO-citro with NaBH4 at room temperature led to the full reduction of the lactone moiety which gave a novel fully renewable triol monomer having a citronellol side chain (Triol-citro). Noticeably, by simply changing the reducing agent, temperature and reaction duration, the partial reduction of HBO-citro can be achieved to yield a mixture of 5- and 6-membered Lactol-citro molecules. Triol-citro was chosen to prepare functional renewable polyesters having citronellol pendant chains via polycondensation reactions with diacyl chlorides having different chain lengths. Good thermal stability (Td5% up to 170 °C) and low glass transition temperatures (as low as −42 °C) were registered for the polyesters obtained. The polymers were then hydrolyzed using a commercial lipase from Thermomyces lanuginosus (Lipopan® 50 BG) to assess their biodegradability. A higher degradation profile was found for the polyesters prepared using co-monomers (acyl chlorides) having longer chain lengths. This is likely due to the decreased steric hindrance around the ester bonds which allowed enhanced accessibility of the enzyme.  相似文献   

6.
The thermal stabilities of two thermotropic liquid crystal polyesters were analysed by means of thermogravimetric analysis (TG), as a function of the chemical structure of the aliphatic spacer between the aromatic-triad mesogenic units. TG was combined with mass spectrometry to confirm that the degradation mechanism previously observed in a Fourier transform infrared study of the degrading polymers follows a β-cis-elimination process. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Control of the surface hydrophilicities and enzymatic hydrolyzability of hydrophobic aliphatic polyesters such as poly(ε‐caprolactone) (PCL) and poly(L ‐lactide) [i.e. poly(L ‐lactic acid) (PLLA)] was attempted by coating with hydrophilic poly(vinyl alcohol) (PVA). The PVA coating was carried out by immersion of the PCL and PLLA films in PVA solutions. The effects of PVA coating on the hydrophilicities were monitored by dynamic contact angle measurements, while the enzymatic hydrolyzability of the PVA‐coated PCL and PLLA films was evaluated by the weight losses after Rhizopus arrhizus lipase‐ and proteinase K‐catalyzed hydrolysis, respectively. It was found that the PVA coating successfully enhanced the hydrophilicities of the aliphatic polyester films and significantly suppressed enzymatic hydrolyzability of the aliphatic polyester films, excluding the PCL film coated at a very low concentration such as 0.01 g · dL?1 and the crystallized PLLA film coated at 1 g · dL?1, for which slight enhancement and no significant enhancement, respectively, were observed in the enzymatic hydrolyzability. Moreover, the hydrophilicities and enzymatic hydrolyzability of the aliphatic polyester films were controllable to some extent by varying the PVA solution concentration and the film crystallinity.

Advancing contact angle (θa) of PCL, PLLA‐C, and PLLA‐A films before and after the PVA coating by immersion in 1 g · dL?1 solution.  相似文献   


8.
In advance of a discussion on structural effects on biodegradation, aliphatic polyesters as biodegradable structural materials were classified into four types regarding chemical structure, that is poly(ω-hydroxy acid), poly(β-hydroxyalkanoate), poly(ω-hydroxyalkanoate) and poly(alkylene dicarboxylate), and reviewed on synthesis route, thermal and physical properties, and biodegradability. The biodegradation mechanism of these aliphatic polyesters were discussed on the major mode of hydrolysis reaction in regard whether it was enzyme-catalyzed or not, and the substrate specificities of enzymes, such as lipases or PHA depolymerases, were discussed on the hydrolysis of the aliphatic polyesters in respect of primary structure. Moreover, the biodegradation behaviors were exceedingly influenced by solid-state morphology in addition to primary structure. The rate of enzymatic degradation of polycaprolactone fibers drawn with various draw ratios was dependent on draw ratios, suggesting that crystallinity and orientation of them affected biodegradability by lipase. In the study of enzymatic degradation of films made from butylene succinate – ethylene succinate copolymer, the dependence of degradation rate on polymeric compositions was ascribed to the degree of crystallinity rather than the primary structure. These studies revealed that the degree of crystallinity was the major rate-determining factor of biodegradation of solid polymers. © 1997 John Wiley & Sons, Ltd.  相似文献   

9.
壳聚糖的酶法降解   总被引:5,自引:0,他引:5  
用壳聚糖酶降解壳聚糖,探讨了壳聚糖降解过程中温度、pH值、底物浓度和金属离子对酶促反应的影响。结果表明:酶促反应进行到5 h左右时,即可得到聚合度小于10的壳寡糖。该酶促反应的最适温度为50℃,最适pH=5.5;最适底物浓度为0.02 g/mL;金属离子Ca2+和Mg2+对酶降解有一定的促进作用,而Zn2+、Cu2+对酶降解有较强的抑制作用。该酶促反应符合米氏动力学方程,米氏常数Km=7.80 g/L,最大反应速率Vmax=7.72 g/(min.L)。  相似文献   

10.
低温等离子体处理化工恶臭污染物硫化氢的研究   总被引:1,自引:1,他引:1  
采用电晕放电低温等离子体处理模拟硫化氢恶臭气体,考察了输入功率、初始浓度、气体湿度、停留时间等因素对降解效果和能量效率的影响,同时对反应过程进行了动力学研究。研究表明:输入功率以及停留时间对硫化氢降解的影响是积极的,但能量效率随着两者的增加先增大后减小。硫化氢的降解率随着初始浓度的增加而降低,而能量效率随着初始浓度的增加而增加。在气体湿度增加初期,硫化氢降解率和能量效率均随着气体湿度的增加而增加,当气体湿度为50%时达到最大值,然而随着气体湿度的进一步增加,其降解率和能量效率反而降低。对电晕放电低温等离子体处理硫化氢的反应动力学进行了分析,得到硫化氢的反应速率常数为kH2S=0.356 8 m3/(W·h)。  相似文献   

11.
Abstract

Network copolyesters were made from adipic acid and ethylene glycol with 10–40 mol% trimesic acid (Y). Prepolymers prepared by melt polycondensation were cast from dimethylformamide solution and postpolymerized at 260°C for various times to form a network. The degree of reaction (D R), estimated from the infrared absorbance of hydroxyl and methylene groups, increased with increasing postpolymerization time and leveled out at about 90% after 4–6 hours. Heat distortion temperatures (T h) measured by thermomechanical analysis increased greatly from ?83 to 48°C upon the incorporation of Y. Wide-angle x-ray diffraction patterns showed that the copolymer films are amorphous. Density, tensile strength, and Young's modulus decreased for the copolymers with 10–30 mol% Y, whereas they increased drastically for the copolymer with 40 mol% Y. The enzymatic degradation was estimated by the weight loss of the copolymer films in buffer solutions with a lipase at 37°C. The weight loss decreased remarkably with increasing Y and showed no weight loss for the copolymer with 40 mol% Y. On the other hand, the weight loss by alkali hydrolysis increased for the copolymers with 10 and 20 mol% Y, implying a difference in the degradation mechanism between enzymatic degradation and alkali hydrolysis.  相似文献   

12.
活性炭和H2O2存在下辉光放电等离子体降解邻苯二胺   总被引:3,自引:0,他引:3  
活性炭和H2O2存在下辉光放电等离子体降解邻苯二胺;辉光放电等离子体;降解;邻苯二胺;废水处理  相似文献   

13.
微波等离子体对聚乙烯材料的表面改性   总被引:4,自引:1,他引:4  
对高分子材料进行表面修饰,可以赋予材料表面新的物理和化学性能,提高材料的亲水性、粘结性、电镀和生物匹配性等.在表面改性方法中,新近发展的等离子体改性技术由于具有操作简单,工艺干法化,不影响材料本体结构和性能等优点而日益受到人们的重视[1,2].微波等...  相似文献   

14.
Poly(L-lactide) (PLLA) and poly(epsilon-caprolactone) (PCL) ultrafine fibers were prepared by electrospinning. The influence of cationic and anionic surfactants on their enzymatic degradation behavior was investigated by measuring weight loss, molecular weight, crystallinity, and melting temperature of the fibers as a function of degradation time. Under the catalysis of proteinase K, the PLLA fibers containing the anionic surfactant sodium docecyl sulfate (SDS) exhibited a faster degradation rate than those containing cationic surfactant triethylbenzylammonium chloride (TEBAC), indicating that surface electric charge on the fibers is a critical factor for an enzymatic degradation. Similarly, TEBAC-containing PCL fibers exhibited a 47% weight loss within 8.5 h whereas SDS-containing PCL fibers showed little degradation in the presence of lipase PS. By analyzing the charge status of proteinase K and lipase PS under the experimental conditions, the importance of the surface charges of the fibers and their interactions with the charges on the enzymes were revealed. Consequently, a "two-step" degradation mechanism was proposed: (1) the enzyme approaches the fiber surface; (2) the enzyme initiates hydrolysis of the polymer. By means of differential scanning calorimetry and wide-angle X-ray diffraction, the crystallinity and orientation changes in the PLLA and PCL fibers during the enzymatic degradation were investigated, respectively.  相似文献   

15.
脂肪族聚酯是一种可生物降解的新型高聚物,可通过化学催化、发酵和酶催化来合成.酶催化合成聚酯是一种新型的环境友好绿色化学技术,可以在温和条件下高效的合成聚酯,有着传统聚合方法难以比拟的优势.尤其是特种酶的应用,为传统方法难以合成的聚酯,开辟了一条新的合成途径.本文综述了脂肪酶催化缩聚、酯交换、内酯开环聚合等聚酯合成方法,并讨论了反应参数(如溶剂、温度、酶和单体的浓度)对反应的影响.  相似文献   

16.
Ráhel´  J.  Černák  M.  Hudec  I.  Štefečka  M.  Kando  M.  Chodák  I. 《Plasmas and Polymers》2000,5(3-4):119-127
Polyester monofilaments were treated by a pulsed surface electrical discharge in nitrogen at atmospheric pressure, to increase their adhesion to an epoxy resin matrix. The treatment resulted in an eight-fold increase in adhesive strength, without any change in mechanical properties of the monofilaments. It is concluded that polar group interactions, rather than increased surface area, are responsible for the improved adhesive strength.  相似文献   

17.
18.
Graft copolymers of bacterial polyesters were prepared by direct condensation of poly(3‐hydroxyoctanoate‐co‐9‐carboxy‐3‐hydroxydecanoate) (PHOD) and poly(ethylene glycol) (PEG) or poly(lactic acid) (PLA). Nanoparticles from PHO, PHOD, PHOD‐g‐PEG, and PHOD‐g‐PLA were obtained by solvent displacement without stabilizer, and their stability in different aqueous media with different salt concentrations were studied. The results showed that the presence of hydrophilic PEG on the particle surface prevents the aggregation promotion by salts in aqueous solution. PHOD‐g‐PEG appears to be a promising candidate for site‐specific drug delivery systems.

1H NMR spectrum of PHOD‐g‐PLA in CDCl3.  相似文献   


19.
辉光放电等离子体对聚丙烯纤维的表面改性   总被引:11,自引:0,他引:11  
在对电晕、介质阻挡放电、γ射线辐射接枝对化纤改性的简要介绍基础上,重点论述了辉光放电等离子体对聚丙烯纤维的改性。并按等离子体技术的发展过程,对低压和常压辉光放电等离子体对聚丙烯纤维与织物改性的特点、原理及发展前景进行了扼要综述,指出常压辉光放电等离子体是一种很有潜力的表面改性技术。  相似文献   

20.
Aliphatic polyesters, especially those derived from lactide (PLA), glycolide (PGA) and ε-caprolactone (PCL), are being investigated worldwide for applications in the field of surgery (suture material, devices for internal bone fracture fixation), pharmacology (sustained drug delivery systems), and tissue engineering (scaffold for tissue regeneration) [1,2]. This is mainly due to their good biocompatibility and variable degradability. These polymers present also a growing interest for environmental applications in agriculture (mulch films) and in our everyday life (packaging material)as the development of biodegradable materials is now considered as one of the potential solutions to the problem of plastic waste management.For both biomedical and environmental applications, it is of major importance to understand the degradation characteristics of the polymers. The hydrolytic degradation of aliphatic polyesters has been investigated by many research groups. Our group has shown that degradation of PLAGA large size devices is faster inside than at the surface. This heterogeneous degradation is due to the autocatalytic effect of carboxylic endgroups formed by ester bond cleavage. Moreover,degradation-induced morphological and compositional changes were also elucidated. In the case of PCL, the hydrolytic degradation is very slow due to its hydrophobicity and crystallinity.The enzymatic degradation of these polymers has been investigated by a number of authors. A specific enzyme, proteinase K, has been shown to have significant effects on PLA degradation. This enzyme preferentially degrade L-lactate units as opposed to D-lactate ones, amorphous zones as opposed to crystalline ones [3]. The enzymatic degradation of PCL polymers has also been investigated. A number of lipase-type enzymes were found to significantly accelerate the degradation of PCL despite its high crystallinity. In the case of PLA/PCL blends, the two components exhibited well separated crystalline domains. The selective degradation of PCL or PLA components by enzymes revealed the inner morphology of the blends with formation of microsphere-like or island-like structures [5].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号