首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
A graph G is bridged if every cycle C of length at least 4 has vertices x,y such that dG(x,y) < dC(x,y). A cycle C is isometric if dG(x,y) = dC(x,y) for all x,yV(C). We show that every graph contractible to a graph with girth g has an isometric cycle of length at least g. We use this to show that every minimal cutset S in a bridged graph G induces a connected subgraph. We introduce a “crowning” construction to enlarge bridged graphs. We use this to construct examples showing that for every connected simple graph H with girth at least 6 (including trees), there exists a bridged graph G such that G has a unique minimum cutset S and that G[S] = H. This provides counterexamples to Hahn's conjecture that dG(u,v) ≤ 2 when u and v lie in a minimum cutset in a bridged graph G. We also study the convexity of cutsets in bridged graphs. © 2003 Wiley Periodicals, Inc. J Graph Theory 43: 161–170, 2003  相似文献   

2.
A graph G is called a supercompact graph if G is the intersection graph of some family ?? of subsets of a set X such that ?? satisfies the Helly property and for any xy in X, there exists S ∈ ?? with xS, y ? S. Various characterizations of supercompact graphs are given. It is shown that every clique-critical graph is supercompact. Furthermore, for any finite graph, H, there is at most a finite number of different supercompact graphs G such that H is the clique-graph of G.  相似文献   

3.
The diamond is the graph obtained from K4 by deleting an edge. Circle graphs are the intersection graphs of chords in a circle. Such a circle model has the Helly property if every three pairwise intersecting chords intersect in a single point, and a graph is Helly circle if it has a circle model with the Helly property. We show that the Helly circle graphs are the diamond-free circle graphs, as conjectured by Durán. This characterization gives an efficient recognition algorithm for Helly circle graphs.  相似文献   

4.
A weighted graph is one in which every edge e is assigned a nonnegative number, called the weight of e. The sum of the weights of the edges incident with a vertex υ is called the weighted degree of υ. The weight of a cycle is defined as the sum of the weights of its edges. In this paper, we prove that: (1) if G is a 2‐connected weighted graph such that the minimum weighted degree of G is at least d, then for every given vertices x and y, either G contains a cycle of weight at least 2d passing through both of x and y or every heaviest cycle in G is a hamiltonian cycle, and (2) if G is a 2‐connected weighted graph such that the weighted degree sum of every pair of nonadjacent vertices is at least s, then for every vertex y, G contains either a cycle of weight at least s passing through y or a hamiltonian cycle. AMS classification: 05C45 05C38 05C35. © 2005 Wiley Periodicals, Inc. J Graph Theory  相似文献   

5.
We say that a vertexx of a graph is predominant if there exists another vertexy ofG such that either every maximum clique ofG containingy containsx or every maximum stable set containingx containsy. A graph is then called preperfect if every induced subgraph has a predominant vertex. We show that preperfect graphs are perfect, and that several well-known classes of perfect graphs are preperfect. We also derive a new characterization of perfect graphs.  相似文献   

6.
For 1 ≤ dk, let Kk/d be the graph with vertices 0, 1, …, k ? 1, in which ij if d ≤ |i ? j| ≤ k ? d. The circular chromatic number χc(G) of a graph G is the minimum of those k/d for which G admits a homomorphism to Kk/d. The circular clique number ωc(G) of G is the maximum of those k/d for which Kk/d admits a homomorphism to G. A graph G is circular perfect if for every induced subgraph H of G, we have χc(H) = ωc(H). In this paper, we prove that if G is circular perfect then for every vertex x of G, NG[x] is a perfect graph. Conversely, we prove that if for every vertex x of G, NG[x] is a perfect graph and G ? N[x] is a bipartite graph with no induced P5 (the path with five vertices), then G is a circular perfect graph. In a companion paper, we apply the main result of this paper to prove an analog of Haj?os theorem for circular chromatic number for k/d ≥ 3. Namely, we shall design a few graph operations and prove that for any k/d ≥ 3, starting from the graph Kk/d, one can construct all graphs of circular chromatic number at least k/d by repeatedly applying these graph operations. © 2005 Wiley Periodicals, Inc. J Graph Theory 48: 186–209, 2005  相似文献   

7.
A graph G is a quasi‐line graph if for every vertex v, the set of neighbors of v can be expressed as the union of two cliques. The class of quasi‐line graphs is a proper superset of the class of line graphs. A theorem of Shannon's implies that if G is a line graph, then it can be properly colored using no more than 3/2 ω(G) colors, where ω(G) is the size of the largest clique in G. In this article, we extend this result to all quasi‐line graphs. We also show that this bound is tight. © 2006 Wiley Periodicals, Inc. J Graph Theory  相似文献   

8.
In this paper we investigate locally primitive Cayley graphs of finite nonabelian simple groups. First, we prove that, for any valency d for which the Weiss conjecture holds (for example, d?20 or d is a prime number by Conder, Li and Praeger (2000) [1]), there exists a finite list of groups such that if G is a finite nonabelian simple group not in this list, then every locally primitive Cayley graph of valency d on G is normal. Next we construct an infinite family of p-valent non-normal locally primitive Cayley graph of the alternating group for all prime p?5. Finally, we consider locally primitive Cayley graphs of finite simple groups with valency 5 and determine all possible candidates of finite nonabelian simple groups G such that the Cayley graph Cay(G,S) might be non-normal.  相似文献   

9.
We introduce a natural extension of the vertex degree to ends. For the cycle space C(G) as proposed by Diestel and Kühn [4, 5], which allows for infinite cycles, we prove that the edge set of a locally finite graph G lies in C(G) if and only if every vertex and every end has even degree. In the same way we generalise to locally finite graphs the characterisation of the cycles in a finite graph as its 2-regular connected subgraphs.  相似文献   

10.
Let ? be a symmetric binary function, positive valued on positive arguments. A graph G = (V,E) is a ?‐tolerance graph if each vertex υ ∈ V can be assigned a closed interval Iυ and a positive tolerance tυ so that xyE ? | IxIy|≥ ? (tx,ty). An Archimedean function has the property of tending to infinity whenever one of its arguments tends to infinity. Generalizing a known result of [15] for trees, we prove that every graph in a large class (which includes all chordless suns and cacti and the complete bipartite graphs K2,k) is a ?‐tolerance graph for all Archimedean functions ?. This property does not hold for most graphs. Next, we present the result that every graph G can be represented as a ?G‐tolerance graph for some Archimedean polynomial ?G. Finally, we prove that there is a ?universal”? Archimedean function ? * such that every graph G is a ?*‐tolerance graph. © 2002 Wiley Periodicals, Inc. J Graph Theory 41: 179–194, 2002  相似文献   

11.
A graph G of order at least 2n+2 is said to be n‐extendable if G has a perfect matching and every set of n independent edges extends to a perfect matching in G. We prove that every pair of nonadjacent vertices x and y in a connected n‐extendable graph of order p satisfy degG x+degG yp ? n ? 1, then either G is hamiltonian or G is isomorphic to one of two exceptional graphs. © 2002 Wiley Periodicals, Inc. J Graph Theory 40: 75–82, 2002  相似文献   

12.
A bull is a graph with five vertices r,y,x,z,s and five edges ry, yx, yz, xz, zs. A graph G is bull-reducible if every vertex of G lies in at most one bull of G. We prove that every bull-reducible Berge graph G that contains no antihole is weakly chordal, or has a homogeneous set, or is transitively orientable. This yields a fast polynomial time algorithm to color the vertices of such a graph exactly.  相似文献   

13.
《Journal of Graph Theory》2018,87(4):526-535
A graph G is hypohamiltonian/hypotraceable if it is not hamiltonian/traceable, but all vertex‐deleted subgraphs of G are hamiltonian/traceable. All known hypotraceable graphs are constructed using hypohamiltonian graphs; here we present a construction that uses so‐called almost hypohamiltonian graphs (nonhamiltonian graphs, whose vertex‐deleted subgraphs are hamiltonian with exactly one exception, see [15]). This construction is an extension of a method of Thomassen [11]. As an application, we construct a planar hypotraceable graph of order 138, improving the best‐known bound of 154 [8]. We also prove a structural type theorem showing that hypotraceable graphs possessing some connectivity properties are all built using either Thomassen's or our method. We also prove that if G is a Grinbergian graph without a triangular region, then G is not maximal nonhamiltonian and using the proof method we construct a hypohamiltonian graph of order 36 with crossing number 1, improving the best‐known bound of 46 [14].  相似文献   

14.
A topology on the vertex set of a graphG iscompatible with the graph if every induced subgraph ofG is connected if and only if its vertex set is topologically connected. In the case of locally finite graphs with a finite number of components, it was shown in [11] that a compatible topology exists if and only if the graph is a comparability graph and that all such topologies are Alexandroff. The main results of Section 1 extend these results to a much wider class of graphs. In Section 2, we obtain sufficient conditions on a graph under which all the compatible topologies are Alexandroff and in the case of bipartite graphs we show that this condition is also necessary.  相似文献   

15.
The circular chromatic number of a graph is a well‐studied refinement of the chromatic number. Circular‐perfect graphs form a superclass of perfect graphs defined by means of this more general coloring concept. This article studies claw‐free circular‐perfect graphs. First, we prove that if G is a connected claw‐free circular‐perfect graph with χ(G)>ω(G), then min{α(G), ω(G)}=2. We use this result to design a polynomial time algorithm that computes the circular chromatic number of claw‐free circular‐perfect graphs. A consequence of the strong perfect graph theorem is that minimal imperfect graphs G have min{α(G), ω(G)}=2. In contrast to this result, it is shown in Z. Pan and X. Zhu [European J Combin 29(4) (2008), 1055–1063] that minimal circular‐imperfect graphs G can have arbitrarily large independence number and arbitrarily large clique number. In this article, we prove that claw‐free minimal circular‐imperfect graphs G have min{α(G), ω(G)}≤3. © 2010 Wiley Periodicals, Inc. J Graph Theory 65: 163–172, 2010  相似文献   

16.
A graph G is defined to be semiharmonic if there is a constant μ (necessarily a natural number) such that, for every vertex v, the number of walks of length 3 starting in v equals μdG(v) where dG(v) is the degree of v. We determine all finite semiharmonic trees and monocyclic graphs.  相似文献   

17.
The nilpotent graph of a group G is a simple graph whose vertex set is G?nil(G), where nil(G) = {y ∈ G | ? x, y ? is nilpotent ? x ∈ G}, and two distinct vertices x and y are adjacent if ? x, y ? is nilpotent. In this article, we show that the collection of finite non-nilpotent groups whose nilpotent graphs have the same genus is finite, derive explicit formulas for the genus of the nilpotent graphs of some well-known classes of finite non-nilpotent groups, and determine all finite non-nilpotent groups whose nilpotent graphs are planar or toroidal.  相似文献   

18.
A simple graph G(X, E) is factor-critical if the induced subgraph 〈Xx〉 admits a perfect matching for every vertex x of G. It is equimatchable if every maximal matching of G is maximum. The equimatchable non-factor-critical graphs have been studied by Lesk, Plummer, and Pulleyblank. In this paper, we study the equimatchable factor-critical graphs; in particular we show that if such a graph is two-connected, it is hamiltonian.  相似文献   

19.
A graph G is 1‐Hamilton‐connected if G?x is Hamilton‐connected for every xV(G), and G is 2‐edge‐Hamilton‐connected if the graph G+ X has a hamiltonian cycle containing all edges of X for any X?E+(G) = {xy| x, yV(G)} with 1≤|X|≤2. We prove that Thomassen's conjecture (every 4‐connected line graph is hamiltonian, or, equivalently, every snark has a dominating cycle) is equivalent to the statements that every 4‐connected line graph is 1‐Hamilton‐connected and/or 2‐edge‐Hamilton‐connected. As a corollary, we obtain that Thomassen's conjecture implies polynomiality of both 1‐Hamilton‐connectedness and 2‐edge‐Hamilton‐connectedness in line graphs. Consequently, proving that 1‐Hamilton‐connectedness is NP‐complete in line graphs would disprove Thomassen's conjecture, unless P = NP. © 2011 Wiley Periodicals, Inc. J Graph Theory 69: 241–250, 2012  相似文献   

20.
For a graph G, we denote by dG(x) and κ(G) the degree of a vertex x in G and the connectivity of G, respectively. In this article, we show that if G is a 3‐connected graph of order n such that dG(x) + dG(y) + dG(z) ≥ d for every independent set {x, y, z}, then G contains a cycle of length at least min{d ? κ(G), n}. © 2006 Wiley Periodicals, Inc. J Graph Theory 54: 277–283, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号