首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microemulsion electrokinetic chromatography (MEEKC) has been applied to the separation of some UV filters (Eusolex 4360, Eusolex 6300, Eusolex OCR, Eusolex 2292, Eusolex 6007, Eusolex 9020, Eusolex HMS, Eusolex OS, and Eusolex 232) commonly found in suntan lotions. The composition of the microemulsion employed was optimized with respect to the best possible separation of the selected analytes using artificial neural networks (ANNs). Two parameters namely the composition of the mixed surfactant system comprising the anionic sodium dodecyl sulfate (SDS) and neutral Brij 35 and the amount of organic modifier (2-propanol) present in the aqueous phase of the microemulsion were modeled. Using an optimized MEEKC buffer consisting of 2.25 g SDS, 0.75 g Brij 35, 6.6 g 1-butanol, 0.8 g n-octane, 17.5 g 2-propanol, and 72.1 g of 10 mM borate buffer (pH 9.2), eight target analytes could be separated in under 25 min employing a diode-array detector to segregate the overlapping signals obtained for Eusolex 9020 and Eusolex HMS. Detection limits from 0.8 to 6.0 nug/mL were obtained and the calibration plots were linear over at least one order of magnitude. The optimized method could be applied to the determination of Eusolex 6300 and Eusolex 9020 in a commercial suntan lotion.  相似文献   

2.
A comparison between chiral cyclodextrin‐modified microemulsion electrokinetic chromatography (CD‐MEEKC) and cyclodextrin‐modified micellar electrokinetic chromatography (CD‐MEKC) for the enantiomeric separation of esbiothrin was carried out. For both methods, the separation conditions were optimized by varying CD types and concentration, running buffer pH and compositions, organic modifiers, and temperature. The optimal CD‐MEEKC conditions were 0.8% n‐heptane, 2.3% SDS, 6.6% n‐butanol, 90.3% 10 mM sodium tetraborate containing 3% (w/v, the ratio of CD mass to microemulsion volume) methyl‐β‐cyclodextrin, pH 10, 25°C. The optimized CD‐MEKC conditions were 3.3% SDS, 96.7% 10 mM sodium tetraborate containing 5% (w/v) β‐CD, pH 10, 25°C. The difference in physicochemical properties of the buffer and CDs resulted in different optimal CD type. The competitive distribution between the microemulsion (or micelle) and chiral CD contributed to the chiral separation. Both methods provided excellent separation (Rs ~? 3) with similar migration time (ca. 15 min). CD‐MEEKC provided higher separation efficiencies (>300000) than CD‐MEKC (>200000). The LODs for CD‐MEEKC and CD‐MEKC were 4.7 μg/mL and 3.2 μg/mL, respectively. The RSDs of migration time and peak area for CD‐MEEKC were slightly higher than for CD‐MEKC. Both the demonstrated CD‐MEEKC and CD‐MEKC methods provided high efficiencies, low LODs, and reproducible enantioseparations of esbiothrin.  相似文献   

3.
A microemulsion electrokinetic chromatographic (MEEKC) method has been developed and validated for determination of resibufogenin and cinobufagin in toad venom and in traditional Chinese medicine prepared from the venom. The MEEKC method involved use of sodium dodecyl sulfate (SDS) as surfactant, heptane as organic solvent, and butan-1-ol as co-solvent. To improve the separation, the effect of temperature and running buffer pH were evaluated. The optimized conditions (heptane 0.81% (w/w), SDS 3.31% (w/w), butan-1-ol 6.61% (w/w), and 10 mmol L−1 sodium tetraborate buffer, pH 9.2, and 298 nm as the detection wavelength) enabled useful and repeatable separation of the analytes.  相似文献   

4.
Microemulsion electrokinetic chromatography (MEEKC) has been applied to the separation of some phenolic antioxidants [Irganox 1024, Irganox 1035, Irganox 1076, Irganox 1010, Irganox 1330, Irgafos 138, Irganox 168 and 2,6-di-tert.-butyl-4-methylphenol (BHT)]. Due to the extremely hydrophobic nature of these analytes, they could not be separated using standard MEEKC conditions and two alternative approaches were investigated. Using an acidic buffer (phosphate, pH 2.5) to effectively suppress the electroosmotic flow, the addition of 2-propanol to the aqueous phase of the microemulsion buffer to improve partitioning of the analytes, and a negative separation voltage, separation of five of the analytes in under 10 min was possible. The second approach, using a basic buffer (borate, pH 9.2) and a positive separation voltage resulted in complete resolution of all eight analytes. A mixed surfactant system comprising the anionic sodium dodecyl sulfate (SDS) and neutral Brij 35 was used to reduce the overall charge and with it the mobility of the droplets, and hence the separation time. Using an optimised MEEKC buffer consisting of 2.25% (w/w) SDS, 0.75% (w/w) Brij 35, 0.8% (w/w) n-octane, 6.6% (w/w) 1-butanol, 25% (w/w) 2-propanol and 64.6% (w/w) 10 mM borate buffer (pH 9.2) the eight target analytes were baseline separated in under 25 min. For these analytes, MEEKC was found to be superior to micellar electrokinetic chromatography in every respect. Specifically, the solubility of the analytes was better, the selectivity was more favourable, the analysis time was shorter and the separation efficiency was up to 72% higher when using the MEEKC method. Detection limits from 5.4 to 26 microg/ml were obtained and the calibration plot was linear over more than one order of magnitude. The optimised method could be applied to the determination of Irganox 1330 and Irganox 1010 in polypropylene.  相似文献   

5.
Microemulsion EKC (MEEKC) was developed for quantitative analysis of curcuminoids, such as curcumin (C), demethoxycurcumin (D), and bis-demethoxycurcumin (B). MEEKC separation of curcuminoids was optimized, and a change in resolution was explained using a modified equation for resolution in MEEKC without electroosmosis. The suitable MEEKC conditions for separation of curcuminoids were obtained to be the microemulsion buffer containing 50 mM phosphate buffer at pH 2.5, 1.1% v/v n-octane as oil droplets, 180 mM SDS as surfactant, 890 mM 1-butanol as cosurfactant, and 25% v/v 2-propanol as organic cosolvent; applied voltage of -15 kV; and separation temperature 25 degrees C. Achieved baseline resolution of C:D and D:B was obtained with R(s) -2.4 and analysis time within 18 min. In addition, high accuracy and precision of the method were obtained. This MEEKC method was used for quantitative determination of individual curcuminoids in medicinal turmeric capsules and powdered turmeric used as coloring additive in food, with simple sample preparation such as solvent extraction, dilution, and filtration, and without cleaning up by SPE.  相似文献   

6.
《Electrophoresis》2018,39(8):1119-1128
A simple, efficient and environmental friendly method was proposed for determining five sesquiterpenoids of Curcuma wenyujin by MSPD extraction coupled with MEEKC separation. Molecular sieve was applied as a solid support for extraction of sesquiterpenoids for the first time. Various parameters affecting extraction and separation efficiency were investigated. The optimized conditions involved dispersing sample (200 mg) with 200 mg of TS‐1 for 150 s and using 1000 μL of methanol to elute five target analytes. Finally, they were well separated by using a running buffer containing 1.3% SDS, 5.0% 1‐butanol, 0.5% ethyl acetate and 10% acetonitrile in 10 mM borate buffer at pH 9.0. Consequently, the developed method was fully validated and successfully applied to determine the five sesquiterpenoids including curdine, curcumenol, germacrone, furanodiene and β‐elemene in Curcuma wenyujin origin's Chinese herbal medicines. Furthermore, hierarchical cluster analysis was performed based on the contents of target compounds for distinguishing steamed and non‐steamed drugs. The present study provided a promising method for fast investigation and discrimination of chemical difference in steam & non‐steamed Chinese medicines from Curcuma wenyujin origin.  相似文献   

7.
A microemulsion electrokinetic chromatographic (MEEKC) method was developed for the separation of six catechins, specific marker phytochemicals of Cistus species. The MEEKC method involved the use of sodium dodecyl sulfate (SDS) as surfactant, heptane as organic solvent and butan-1-ol as co-solvent. In order to have a better stability of the studied catechins, the separation was performed under acidic conditions (pH 2.5 phosphate buffer). The effects of SDS concentration and of the amount of organic solvent and co-solvent on the analyte resolution were evaluated. The optimized conditions (heptane 1.36% (w/v), SDS 2.31% (w/v), butan-1-ol 9.72% (w/v) and 50 mM sodium phosphate buffer (pH 2.5) 86.61% (w/v)) allowed a useful and reproducible separation of the studied analytes to be achieved. These conditions provided a different separation profile compared to that obtained under conventional micellar electrokinetic chromatography (MECK) using SDS. The method was validated and applied to the determination of catechin and gallocatechin in lyophilized extracts of Cistus incanus and Cistus monspeliensis.  相似文献   

8.
A simple analytical scheme for the detection and quantification of amitrol and triazine herbicides (atrazine, ametryn and atraton) and degradation product (2‐hydroxyatrazine) in environmental water samples by CZE is reported. On‐column preconcentration of analytes from untreated water samples (mineral, spring, tap and river water) is accomplished by introducing an acid plug (200 mM citrate of pH 2.0) after the sample and then proceeding with the CZE separation, using 100 mM formiate buffer of pH 3.5 as running buffer and 25.0 KV as separation voltage. UV detection at 200 nm provides LODs from 50 to 300 nM in untreated samples and they were lowered tenfold by sample preconcentration by evaporation. Calculated recoveries were typically higher than 90%. Minimal detectable concentration of the electroactive amitrol could be decreased about 20‐fold when electrochemical detection was employed by monitoring the amperometric signal at +800 mV using a carbon paste electrode (LOD of 9.6 nM, 0.81 μg/L, versus 170 nM, 14.3 μg/L, using amperometric and UV detection, respectively) in untreated water samples.  相似文献   

9.
A new hexane-in-water microemulsion was investigated as buffer in microemulsion EKC (MEEKC). At difference with other microemulsions, the addition of cosurfactant was not necessary to stabilize the microemulsion. The proposed microemulsion was successfully used to achieve electrophoretic separation of seven antibiotics including nitroimidazoles, cephapirin and tetracyclines. Selectivity and separation efficiency achieved in MEEKC were compared with MEKC. MEEKC technique proved to be more efficient than MEKC for performing the separation of the analytes and the presence of microemulsions was found to be critical to achieve the separation of tetracyclines. The proposed microemulsion also points out that solvents with high volatility, such as hexane, can be stabilized and used as a microemulsion of SDS.  相似文献   

10.
Hua Yang  Yao Ding  Ping Li 《Electrophoresis》2013,34(9-10):1273-1294
Microemulsion electrokinetic chromatography (MEEKC) is a CE separation technique, which utilizes buffered microemulsions as the separation media. In the past two decades, MEEKC has blossomed into a powerful separation technique for the analysis of a wide range of compounds. Pseudostationary phase composition is so critical to successful resolution in EKC, and several variables could be optimized including surfactant/co‐surfactant/oil type and concentration, buffer content, and pH value. Additionally, MEEKC coupled with online sample preconcentration approaches could significantly improve the detection sensitivity. This review comprehensively describes the development of MEEKC from the period 1991 to 2012. Areas covered include basic theory, microemulsion composition, improving resolution and enhancing sensitivity methods, detection techniques, and applications of MEEKC.  相似文献   

11.

A simple solid phase extraction (SPE) method coupled with high performance liquid chromatography (HPLC) using UV detector and microemulsion electrokinetic chromatography (MEEKC) has been developed and compared for the quantitative determination of miconazole nitrate in pharmaceutical formulation. For HPLC method, two parameters were optimized, namely, the wavelength and the mobile phases. The optimized condition was at the 225 nm wavelength and the mobile phase of ACN:MeOH (90:10 v/v). There are seven MEEKC parameters that were optimized, in this research, which were applied to voltage, temperature, wavelength, sodium dodecyl sulfate (SDS) concentration, buffer pH, buffer concentration and butan-1-ol concentration. The optimum MEEKC condition was obtained using 86.35 % (w/w) 2.5 mM borate buffer pH 9, 0.25 % (w/w) SDS, 0.8 % (w/w) ethyl acetate, 6.6 % w/w butan-1-ol and 6.0 % (w/w) acetonitrile. The combination of SPE using a diol column with HPLC–UV and the MEEKC methods were successfully applied for the determination of miconazole nitrate in a pharmaceutical formulation with the recovery percentage of 98.35 and 92.50 %, respectively.

  相似文献   

12.
孟宪双  马强  白桦  张庆  吕庆 《色谱》2015,33(8):799-804
建立了一种反相高效液相色谱同时测定防晒类化妆品中15种紫外线吸收剂的分析方法。化妆水、乳液、膏霜和蜡质样品中首先加入四氢呋喃(含2 g/L氢氧化铵),涡旋、振荡、混匀(若蜡质样品仍分散不完全,可超声振荡加热至50 ℃),再加入80%(v/v)甲醇水溶液振荡混匀、超声提取、离心、过滤后,采用XTerra MS C18柱分离,经水(含0.1%(v/v)甲酸)和甲醇(含0.1%(v/v)甲酸)梯度洗脱,以二极管阵列检测器检测,检测波长为280 nm和311 nm,外标法定量。实验中对不同基质类型样品的前处理条件(样品分散溶剂、萃取溶剂和萃取时间等)进行了重点优化。结果表明,15种紫外线吸收剂在各自的线性范围内呈良好的线性关系(r2≥0.9991),方法的定量限为1.2~5.1 μg/g,在低、中、高3个添加水平下的回收率为84.2%~100.7%,相对标准偏差(RSD)为0.9%~9.5%。该分析方法分离效果好、灵敏度高、定量准确,可用于防晒类化妆品的实际检测。  相似文献   

13.
In this work, the influences of ionic liquid (IL) as a modifier on microemulsion microstructure and separation performance in MEEKC were investigated. Experimental results showed that synergetic effect between IL 1‐butyl‐3‐methylimidazolium tetrafluoro‐borate (BmimBF4) and surfactant SDS gave a decreased CMC. With increment of IL in microemulsion, negative ζ potential of the microdroplets reduced gradually. The influence of IL on the dimensions of microdroplet was complicated. At BmimBF4 less than 8 mM, IL made microemulsion droplet smaller in size. While at BmimBF4 more than 10 mM, the size increased and reached to a maximum value at 12 mM, where the microdroplets were larger than that without IL. After that, the micreodroplet size decreased again. Relative fluorescence intensity of the first vibration band of pyrene to the third one (I1/I3) enhanced as IL was added to microemulsion, which indicated that this addition increased environmental polarity in the inner core of microdroplets. Prednisone, hydrocortisone, prednisolone, hydrocortisone acetate, cortisone acetate, prednisolone acetate, and triamcinolone acetonide were analyzed with MEEKC modified with IL to evaluate the separation performance. Cortisone acetate and prednisolone acetate could not be separated at all in typical microemulsion. The seven analytes could be separated by the addition of 10 mM BmimBF4 into the microemulsion system. The method has been used for analysis of corticosteroids in cosmetic samples with simple extraction; the recoveries for seven analytes were between 86 and 114%. This method provides accuracy, reproducibility, pretreatment simplicity, and could be applied to the quality control of cosmetics.  相似文献   

14.
A simple solid phase extraction (SPE) method coupled with high performance liquid chromatography (HPLC) using UV detector and microemulsion electrokinetic chromatography (MEEKC) has been developed and compared for the quantitative determination of miconazole nitrate in pharmaceutical formulation. For HPLC method, two parameters were optimized, namely, the wavelength and the mobile phases. The optimized condition was at the 225 nm wavelength and the mobile phase of ACN:MeOH (90:10 v/v). There are seven MEEKC parameters that were optimized, in this research, which were applied to voltage, temperature, wavelength, sodium dodecyl sulfate (SDS) concentration, buffer pH, buffer concentration and butan-1-ol concentration. The optimum MEEKC condition was obtained using 86.35 % (w/w) 2.5 mM borate buffer pH 9, 0.25 % (w/w) SDS, 0.8 % (w/w) ethyl acetate, 6.6 % w/w butan-1-ol and 6.0 % (w/w) acetonitrile. The combination of SPE using a diol column with HPLC–UV and the MEEKC methods were successfully applied for the determination of miconazole nitrate in a pharmaceutical formulation with the recovery percentage of 98.35 and 92.50 %, respectively.  相似文献   

15.
A PEG‐modified reversed migration MEEKC method was developed for simultaneous determination of six polyynes, including oplopandiol, falcarindiol, oplopandiol acetate, (11S, 16S, 9Z)‐9,17‐octadecadiene‐12,14‐diyne‐1,11,16‐triol,1‐acetate, oplopantriol B, and oplopantriol A, in Oplopanax horridus and Oplopanax elatus. The running buffer containing 0.8% v/v ethyl acetate, 3.8% w/v SDS, 6.6% v/v n‐butanol in 20 mM phosphate buffer (pH 2.5), followed by mixing with propan‐2‐ol at 30% v/v and PEG‐1000 at 15% w/v, was applied in the analysis. The proposed method was successfully applied to determine the six polyynes in five samples of Oplopanax horridus and one of O. elatus. The result showed that the types and amounts of polyynes present were obviously different when comparing the two herbs. Besides, the developed PEG‐modified reversed MEEKC method might be suitable for the analysis of hydrophobic analytes in herbal medicines.  相似文献   

16.
Recently, in silico models have been developed to predict drug pharmacokinetics. However, before application, they must be validated and, for that, information about structurally similar reference compounds is required. A chiral liquid chromatography method with ultraviolet detection (LC‐UV) was developed and validated for the simultaneous quantification of BIA 2–024, BIA 2–059, BIA 2–265, oxcarbazepine, eslicarbazepine (S‐licarbazepine) and R‐licarbazepine in mouse plasma and brain. Compounds were extracted by a selective solid‐phase extraction procedure and their chromatographic separation was achieved on a LiChroCART 250–4 ChiraDex column using a mobile phase of water–methanol (92:8, v/v) pumped at 0.7 mL/min. The UV detector was set at 235 nm. Calibration curves were linear (r2 ≥ 0.996) over the concentration ranges of 0.2–30 µg/mL for oxcarbazepine, eslicarbazepine and R‐licarbazepine; 0.2–60 µg/mL for the remaining compounds in plasma; and 0.06–15 µg/mL for all the analytes in brain homogenate. Taking into account all analytes at these concentration ranges in both matrices, the overall precision did not exceed 9.09%, and the accuracy was within ±14.3%. This LC‐UV method is suitable for carrying out pharmacokinetic studies with these compounds in mouse in order to obtain a better picture of their metabolic pathways and biodistribution. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
A novel microemulsion electrokinetic chromatography (MEEKC) method for separating and determining two sesquoterpene lactones, alantolactone (AL) and isoalantolactone (IAL), in Radix inulae and Liuwei Anxian San has been developed. The effects of several important factors such as internal organic phases, concentration of microemulsion, concentration of acetonitrile, injection time and running voltage were systematically investigated to determine the optimum conditions. The optimum microemulsion system was composed of n-hexane (0.32% w/w), SDS (1.24% w/w), 1-butanol (2.64% w/w), acetonitrile (10% w/w) and 10 mm sodium tetraborate buffer (85.80% w/w, pH 9.2). The applied voltage was 20 kV. The analytes were detected at 214 nm. Regression equations revealed linear relationships (correlation coefficients 0.9950 for AL and 0.9946 for IAL) between the peak area of each analyte and the concentration. The limits of detection (defined as a signal-to-noise ratio of about 3) were approximately 0.45 microg/mL for AL and 0.56 microg/mL for IAL. The levels of the analytes were successfully determined with recoveries ranging from 98.2 to 104.3%. Furthermore, a simple and effective extraction method, with methanol in an ultrasonic water bath for 60 min, was used for sample preparing. Also, MEEKC was compared with micellar electrokinetic chromatography (MEKC) and shown better separation results.  相似文献   

18.
Tao Wen  Guoan Luo  Jian Wang  Bo Yao  Jun Zhu 《Talanta》2007,71(2):854-860
Microemulsion electrokinetic chromatography (MEEKC) and solvent modified micellar electrokinetic chromatography (MEKC) were investigated with the goal of the rapid separation of complex heroin and amphetamine samples. The rapid simultaneous separation of 17 species of heroin, amphetamine and their basic impurities and adulterants was performed within about 10 min using MEEKC for the first time, whereas solvent modified MEKCs were unable to resolve all the components. The comparisons between MEEKC and solvent modified MEKC proved internal lipophilic organic phase in microemulsions played an important role in improving the separation performance with respect to efficiency. However, the role of internal lipophilic organic phase in MEEKC was disgusted at high concentrations of cosurfactant, and the separations of MEEKC and 1-butanol modified MEKC became similar at high concentrations of 1-butanol. The evaluation of reproducibility, linearity and detection limit of optimized MEEKC method provided good results for all the analytes investigated, thus allowing its application to real controlled drug preparation analysis.  相似文献   

19.
A non-aqueous reversed-phase high performance liquid chromatographic method (RP-HPLC) with UV detection at 313 nm was developed and validated for simultaneous determination of methylene bis-benzotriazolyl tetramethylphenol (Tinosorb M) along with three other chemical UV filters, octocrylene (Eusolex OCR), octyl methoxycinnamate (Eusolex 2292) and octyl salicylate (Eusolex OS) in suncare products. An isocratic elution was performed on a Hypersil BDS RP-C18 column (250 mm x 4.6 mm), 5 microm particle size, using a mobile phase consisted of methanol-acetonitrile (90:10, v/v) with a flow-rate of 1.5 ml/min. The determination of the four UV filters was not interfered by the excipients in the products. The method of external standard, as well as the standard addition method was used for the determination. The external standard calibration curves were linear for Eusolex OCR, Eusolex 2292, Eusolex OS, and Tinosorb M in the concentration ranges of 0.5-100 microM, 0.5-100 microM, 0.5-200 microM, and 0.2-100 microM, respectively. Day-to-day relative standard deviation of the determination was within 3%. Limits of detection and quantitation of the above compounds were found equal to 36 and 110 nM, 220 and 660 nM, 170 and 520 nM, 44 and 130 nM, respectively. The recovery of these four chemical UV filters from the spiked samples was 96-103%.  相似文献   

20.
Microemulsion electrokinetic chromatography (MEEKC) using 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM-BF4) ionic liquid (IL) as additive was developed for the analysis of baicalin, wogonin and baicalein in Scutellariae radix and its preparation. After conducting a series of optimizations, baseline separation was obtained for the analytes within 5min under the optimum conditions (sodium dodecyl sulfate (SDS) 0.88% (m/v) ethyl acetate 0.8% (v/v) butan-1-ol 0.2% (v/v) and the buffer composition were 25% acetonitrile (v/v), 7.5 mM BMIM-BF4 and 10 mM NaH2PO4, pH 8.2, applied voltage 17.5 kV and detection at 254 nm), the method has been successfully applied to the determination and quantification of the analytes in the extracts of S. radix (cooked), S. radix (raw) and Qingfeiyihuowan which was the preparation including S. radix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号