首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Homogenization in the small period limit for the solution ue of the Cauchy problem for a parabolic equation in Rd is studied. The coefficients are assumed to be periodic in Rd with respect to the lattice ɛG. As ɛ → 0, the solution u ɛ converges in L2(Rd) to the solution u0 of the effective problem with constant coefficients. The solution u ɛis approximated in the norm of the Sobolev space H 1(Rd) with error O( ɛ); this approximation is uniform with respect to the L2-norm of the initial data and contains a corrector term of order ɛ. The dependence of the constant in the error estimate on time t is given. Also, an approximation in H 1(Rd) for the solution of the Cauchy problem for a nonhomogeneous parabolic equation is obtained.  相似文献   

2.
《Mathematische Nachrichten》2018,291(11-12):1859-1892
This paper is a continuation of our recent paper 8 . We will consider the semi‐linear Cauchy problem for wave models with scale‐invariant time‐dependent mass and dissipation and power non‐linearity. The goal is to study the interplay between the coefficients of the mass and the dissipation term to prove global existence (in time) of small data energy solutions assuming suitable regularity on the L2 scale with additional L1 regularity for the data. In order to deal with this L2 regularity in the non‐linear part, we will develop and employ some tools from Harmonic Analysis.  相似文献   

3.
We study the Cauchy problem for a class of quasilinear hyperbolic systems with coefficients depending on (t, x) ∈ [0, T ] × ?n and presenting a linear growth for |x | → ∞. We prove well‐posedness in the Schwartz space ?? (?n ). The result is obtained by deriving an energy estimate for the solution of the linearized problem in some weighted Sobolev spaces and applying a fixed point argument. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
We construct a generalized solution of the Riemann problem for strictly hyperbolic systems of conservation laws with source terms, and we use this to show that Glimm's method can be used directly to establish the existence of solutions of the Cauchy problem. The source terms are taken to be of the form aG, and this enables us to extend the method introduced by Lax to construct general solutions of the Riemann problem. Our generalized solution of the Riemann problem is “weaker than weak” in the sense that it is weaker than a distributional solution. Thus, we prove that a weak solution of the Cauchy problem is the limit of a sequence of Glimm scheme approximate solutions that are based on “weaker than weak” solutions of the Riemann problem. By establishing the convergence of Glimm's method, it follows that all of the results on time asymptotics and uniqueness for Glimm's method (in the presence of a linearly degenerate field) now apply, unchanged, to inhomogeneous systems.  相似文献   

5.
The aim of this paper is to give an uniform approach to different kinds of degenerate hyperbolic Cauchy problems. We prove that a weakly hyperbolic equation, satisfying an intermediate condition between effective hyperbolicity and the C Levi condition, and a strictly hyperbolic equation with non-regular coefficients with respect to the time variable can be reduced to first-order systems of the same type. For such a kind of systems, we prove an energy estimate in Sobolev spaces (with a loss of derivatives) which gives the well-posedness of the Cauchy problem in C. In the strictly hyperbolic case, we also construct the fundamental solution and we describe the propagation of the space singularities of the solution which is influenced by the non-regularity of the coefficients with respect to the time variable.  相似文献   

6.
In this paper, we consider an initial boundary value problem for the 3‐dimensional nonhomogeneous incompressible magnetohydrodynamic equations with density‐dependent viscosity and resistivity coefficients over a bounded smooth domain. Global in time unique strong solution is proved to exist when the L2 norms of initial vorticity and current density are both suitably small with arbitrary large initial density, and the vacuum of initial density is also allowed. Finally, we revisit the Navier‐Stokes model without electromagnetic effect. We find that this initial boundary problem also admits a unique global strong solution under other conditions. In particular, we prove small kinetic‐energy strong solution exists globally in time, which extends the recent result of Huang and Wang.  相似文献   

7.
《Mathematische Nachrichten》2017,290(11-12):1779-1805
In this paper we will consider the semi‐linear Cauchy problem for wave models with scale‐invariant time‐dependent mass and dissipation and power non‐linearity. The goal is to study the interplay between the coefficients of the mass and the dissipation term to prove blow‐up results or global existence (in time) of small data energy solutions.  相似文献   

8.
Abstract We consider the Cauchy problem for a second order equation of hyperbolic type. This equation degenerates in two different ways. On one hand, the coefficients have a bad behavior with respect to time: there is a blow-up phenomenon in the first time derivative of the principal part’s coefficients, that is the derivative vanishes at the time t=0. On the other hand, the equation is weakly hyperbolic and the multiplicity of the roots is not constant, but zeroes are of finite order. Here we overcome the blow-up problem and, moreover, the finitely degeneration of the Cauchy problem allows us to give an appropriate Levi condition on the lower order terms in order to get C well posedness of the Cauchy problem. Keywords: Cauchy problem, Hyperbolic equations, Levi conditions  相似文献   

9.
We find the conditions for the unique solvability of the inverse problem for a time‐fractional diffusion equation with Schwarz‐type distributions in the right‐hand sides. This problem is to find a generalized solution of the Cauchy problem and an unknown space‐dependent part of an equation's right‐hand side under a time‐integral overdetermination condition.  相似文献   

10.
In this paper, we exploit the umbral calculus framework to reformulate the so‐called discrete Cauchy‐Kovalevskaya extension in the scope of hypercomplex variables. The key idea is to consider not only formal power series representation for the underlying solution, but also integral representations for the Chebyshev polynomials of first and second kind by means of its Cauchy principal values. It turns out that the resulting integral representation associated to our toy problem is a space‐time Fourier type inversion formula. Moreover, with the aid of some Laplace transform identities involving the generalized Mittag‐Leffler function, we are able to establish a link with a Cauchy problem of differential‐difference type.  相似文献   

11.
We establish the global existence of smooth solutions to the Cauchy problem for the multi‐dimensional hydrodynamic model for semiconductors, provided that the initial data are perturbations of a given stationary solutions, and prove that the resulting evolutionary solution converges asymptotically in time to the stationary solution exponentially fast. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
This paper is concerned with developing an operator theory for Riemann‐Liouville fractional Cauchy problem. Two notions, named Riemann‐Liouville fractional resolvent and solution operator, are developed. Some of their properties are deduced. Moreover, the obtained results are applied to Riemann‐Liouville fractional Cauchy problem.  相似文献   

13.
We study the Cauchy problem for time-dependent diffusion operators with singular coefficients on L1-spaces induced by infinitesimal invariant measures. We give sufficient conditions on the coefficients such that the Cauchy-Problem is well-posed. We construct associated diffusion processes with the help of the theory of generalized Dirichlet forms. We apply our results in particular to construct a large class of Nelson-diffusions that could not been constructed before.  相似文献   

14.
We prove existence of strongly continuous evolution systems in L2 for Schrödinger-type equations with non-Lipschitz coefficients in the principal part. The underlying operator structure is motivated from models of paraxial approximations of wave propagation in geophysics. Thus, the evolution direction is a spatial coordinate (depth) with additional pseudodifferential terms in time and low regularity in the lateral space variables. We formulate and analyze the Cauchy problem in distribution spaces with mixed regularity. The key point in the evolution system construction is an elliptic regularity result, which enables us to precisely determine the common domain of the generators. The construction of a solution with low regularity in the coefficients is the basis for an inverse analysis which allows to infer the lack of lateral regularity in the medium from measured data.  相似文献   

15.
In this paper, we construct a weakly‐nonlinear d'Alembert‐type solution of the Cauchy problem for the Boussinesq‐Klein‐Gordon (BKG) equation. Similarly to our earlier work based on the use of spatial Fourier series, we consider the problem in the class of periodic functions on an interval of finite length (including the case of localized solutions on a large interval), and work with the nonlinear partial differential equation with variable coefficients describing the deviation from the oscillating mean value. Unlike our earlier paper, here we develop a novel multiple‐scales procedure involving fast characteristic variables and two slow time scales and averaging with respect to the spatial variable at a constant value of one or another characteristic variable, which allows us to construct an explicit and compact d'Alembert‐type solution of the nonlinear problem in terms of solutions of two Ostrovsky equations emerging at the leading order and describing the right‐ and left‐propagating waves. Validity of the constructed solution in the case when only the first initial condition for the BKG equation may have nonzero mean value follows from our earlier results, and is illustrated numerically for a number of instructive examples, both for periodic solutions on a finite interval, and localized solutions on a large interval. We also outline an extension of the procedure to the general case, when both initial conditions may have nonzero mean values. Importantly, in all cases, the initial conditions for the leading‐order Ostrovsky equations by construction have zero mean, while initial conditions for the BKG equation may have nonzero mean values.  相似文献   

16.
《偏微分方程通讯》2013,38(3-4):795-816
Abstract

The effect of damping on the large-time behavior of solutions to the Cauchy problem for the three-dimensional compressible Euler equations is studied. It is proved that damping prevents the development of singularities in small amplitude classical solutions, using an equivalent reformulation of the Cauchy problem to obtain effective energy estimates. The full solution relaxes in the maximum norm to the constant background state at a rate of t ?(3/2). While the fluid vorticity decays to zero exponentially fast in time, the full solution does not decay exponentially. Formation of singularities is also exhibited for large data.  相似文献   

17.
A complete asymptotic expansion is constructed for solutions of the Cauchy problem for nth order linear ordinary differential equations with rapidly oscillating coefficients, some of which may be proportional to ω n/2, where ω is oscillation frequency. A similar problem is solved for a class of systems of n linear first-order ordinary differential equations with coefficients of the same type. Attention is also given to some classes of first-order nonlinear equations with rapidly oscillating terms proportional to powers ω d . For such equations with d ∈ (1/2, 1], conditions are found that allow for the construction (and strict justification) of the leading asymptotic term and, in some cases, a complete asymptotic expansion of the solution of the Cauchy problem.  相似文献   

18.
A class of nonlinear Schrödinger operators with singular coefficients is studied. For this class, necessary and sufficient conditions are established for the existence of initial data such that the corresponding solution to the Cauchy problem blows up in finite time. A regularization procedure for the Cauchy problem is proposed, and the limit behavior of the sequence of solutions to the regularized problems is analyzed.  相似文献   

19.
This paper is devoted to the investigation of the solution to the Cauchy problem for a system of partial differential equations describing thermoelasticity of nonsimple materials in a three-dimensional space. The model of linear dynamical thermoelasticity of nonsimple materials is considered as the system of partial differential equations of fourth order. In this paper, we proposed a convenient evolutionary method of approach to the system of equations of nonsimple thermoelasticity. We proved the LpLq time decay estimates for the solution to the Cauchy problem for linear thermoelasticity of nonsimple materials.  相似文献   

20.
In this paper, by means of a constructive method based on the theory of the existence and the uniqueness of the C1 solution to the Cauchy problem and the Goursat problem, the global exact boundary observability for the first‐order quasilinear hyperbolic systems of diagonal form with linearly degenerate characteristics is obtained. In the case that the system has no zero characteristics, we realize the two‐sided and one‐sided global exact boundary observability by the boundary observed values and obtain the observability inequality. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号