首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The properties of the solutions of the differential equation y″ = y2 ? x2 ? c subject to the condition that y is bounded for all finite x discussed. The arguments of Holmes and Spence have been used by Ockendon, Ockendon, and Johnson to show that there are no solutions if c is large and negative. Numerically we find that solutions exist provided c is greater than a critical value c* and estimate this value to be c* = ?…. As x tends to + ∞ the solutions are asymptotic to . The relation between A+ and ?+ are found analytically as A+ → ∞. This problem arises as a connection problem in the theory of resonant oscillations of water waves.  相似文献   

2.
A demonstration method is presented, which will ensure the existence of positive global solutions in time to the reaction–diffusion equation ?utu+up=0 in ?n×[0, ∞), for exponents p?3 and space dimensions n?3. This method does not require the initial value to have a specific uniform smallness condition, but rather to satisfy a bell‐like form. The method is based on a specific upper solution, which models the diffusion process of the heat equation. The upper solution is not self‐similar, but does have a self‐similar‐like form. After transforming the reaction–diffusion problem into an equivalent one, whose initial value is uniformly very small, a local solution is obtained in the time interval [0, 1] by the use of this upper solution. This local solution is then extended to [0, ∞) through an infinite sequence of extensions. At each step, an appropriate change of variables will transform the extension into a problem nearly identical to the local problem in [0, 1]. These transformations exploit the diffusive and self‐similar‐like nature of the upper solution. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, we study the partial Fourier method for treating the Lamé equations in three‐dimensional axisymmetric domains subjected to non‐axisymmetric loads. We consider the mixed boundary value problem of the linear theory of elasticity with the displacement û , the body force f̂ ϵ (L2)3 and homogeneous Dirichlet and Neumann boundary conditions. The partial Fourier decomposition reduces, without any error, the three‐dimensional boundary value problem to an infinite sequence of two‐dimensional boundary value problems, whose solutions û n (n = 0, 1, 2,…) are the Fourier coefficients of û . This process of dimension reduction is described, and appropriate function spaces are given to characterize the reduced problems in two dimensions. The trace properties of these spaces on the rotational axis and some properties of the Fourier coefficients û n are proved, which are important for further numerical treatment, e.g. by the finite‐element method. Moreover, generalized completeness relations are described for the variational equation, the stresses and the strains. The properties of the resulting system of two‐dimensional problems are characterized. Particularly, a priori estimates of the Fourier coefficients û n and of the error of the partial Fourier approximation are given. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

4.
The paper deals with the auto‐correlation equation and its regularization by means of a Lavrent'ev regularization procedure in L2. The solution of this quadratic integral equation of the first kind and of the regularized equation of the second kind are obtained by reduction to a boundary value problem for the Fourier transform of the solution. We prove convergence of the approximate solution to the exact solution and derive a stability estimate for the error. Copyright © John Wiley & Sons, Ltd.  相似文献   

5.
This paper is concerned with existence, uniqueness and behaviour of the solutions of the autonomous third‐order non‐linear differential equation f?+(m+2)f f″?(2m+1)f2=0 on ?+ with the boundary conditions f(0)=?γ, f′(∞)=0 and f″(0)=?1. This problem arises when looking for similarity solutions for boundary layer flows with prescribed heat flux. To study solutions we use some direct approach as well as blowing‐up co‐ordinates to obtain a plane dynamical system. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, we investigate the existence of global weak solutions to the Cauchy problem of a modified two‐component Camassa‐Holm equation with the initial data satisfying limx → ±∞u0(x) = u±. By perturbing the Cauchy problem around a rarefaction wave, we obtain a global weak solution for the system under the assumption u?u+. The global weak solution is obtained as a limit of approximation solutions. The key elements in our analysis are the Helly theorem and the estimation of energy for approximation solutions in $H^1(\mathbb {R})\times H^1(\mathbb {R})In this paper, we investigate the existence of global weak solutions to the Cauchy problem of a modified two‐component Camassa‐Holm equation with the initial data satisfying limx → ±∞u0(x) = u±. By perturbing the Cauchy problem around a rarefaction wave, we obtain a global weak solution for the system under the assumption u?u+. The global weak solution is obtained as a limit of approximation solutions. The key elements in our analysis are the Helly theorem and the estimation of energy for approximation solutions in $H^1(\mathbb {R})\times H^1(\mathbb {R})$ and some a priori estimates on the first‐order derivatives of approximation solutions.  相似文献   

7.
We demonstrate that the system of the Green‐Naghdi equations as a two‐directional, nonlinearly dispersive wave model is a close approximation to the two‐dimensional full water wave problem. Based on the energy estimates and the proof of the well‐posedness for the Green‐Naghdi equations and the water wave problem, we compare solutions of the two systems, showing that without restrictions on the wave amplitude, any two solutions of the two systems remain close, at least in some finite time within the shallow‐water regime, provided that their initial data are close in the Banach space Hs × Hs+1 for some s > . As a consequence, we show that if the depth of the water compared with the wavelength is sufficiently small, the two solutions exist for the same finite time using the uniformly bounded energies defined in the paper. © 2006 Wiley Periodicals, Inc.  相似文献   

8.
The boundary value problem Δu + λeu = 0 where u = 0 on the boundary is often referred to as “the Bratu problem.” The Bratu problem with cylindrical radial operators, also known as the cylindrical Bratu‐Gelfand problem, is considered here. It is a nonlinear eigenvalue problem with two known bifurcated solutions for λ < λc, no solutions for λ > λc and a unique solution when λ = λc. Numerical solutions to the Bratu‐Gelfand problem at the critical value of λc = 2 are computed using nonstandard finite‐difference schemes known as Mickens finite differences. Comparison of numerical results obtained by solving the Bratu‐Gelfand problem using a Mickens discretization with results obtained using standard finite differences for λ < 2 are given, which illustrate the superiority of the nonstandard scheme. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 20: 327–337, 2004  相似文献   

9.
Let X be one of the functional spaces W1,p ((0, ∞), ?N ) or C01 ([0, ∞), ?N ), we study the global continuation in λ for solutions (λ, u, ξ) ∈ ? × X × ?k of the following system of ordinary differential equations: where ?N = X1X2 is a given decomposition, with associated projection P: ?N X1. Under appropriate conditions upon the given functions F and φ, this problem gives rise to a nonlinear Fredholm operator which is proper on the closed bounded subsets of ? × X × ?k and whose zeros correspond to the solutions of the original problem. Using a new abstract continuation result, based on a recent degree theory for proper Fredholm mappings of index zero, we reduce the continuation problem to that of finding a priori estimates for the possible solutions (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
Yoshikazu Giga  Jürgen Saal 《PAMM》2007,7(1):1041101-1041102
We present a result on well-posedness and stability of the Ekman boundary layer problem in the space FM(ℝ2, L2(ℝ+)3), i.e., in the space of L2(ℝ+)3-valued Fourier transformed finite Radon measures. In particular we obtain stability in the angle velocity of rotation, which is important in the analysis of fast oscillating singular limits. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
In the present study, the operator splitting techniques based on the quintic B‐spline collocation finite element method are presented for calculating the numerical solutions of the Rosenau–KdV–RLW equation. Two test problems having exact solutions have been considered. To demonstrate the efficiency and accuracy of the present methods, the error norms L2 and L with the discrete mass Q and energy E conservative properties have been calculated. The results obtained by the method have been compared with the exact solution of each problem and other numerical results in the literature, and also found to be in good agreement with each other. A Fourier stability analysis of each presented method is also investigated.  相似文献   

12.
We consider a steady state v0 of the Euler equation in a fixed bounded domain in ?n. Suppose the linearized Euler equation has an exponential dichotomy of unstable and center‐stable subspaces. By rewriting the Euler equation as an ODE on an infinite‐dimensional manifold of volume‐preserving maps in Wk, q the unstable (and stable) manifolds of v0 are constructed under a certain spectral gap condition that is satisfied for both two‐dimensional and three‐dimensional examples. In particular, when the unstable subspace is finite dimensional, this implies the nonlinear instability of v0 in the sense that arbitrarily small Wk, q perturbations can lead to L2 growth of the nonlinear solutions. © 2013 Wiley Periodicals, Inc.  相似文献   

13.
We consider the problem of minimizing 0<p<1, h∈?, σ>0, among functions u:?d?Ω→?d, u∣?Ω=0, and measurable characteristic functions χ:Ω→?. Here ?+h, ??, denote quadratic potentials defined on the space of all symmetric d×d matrices, h is the minimum energy of ?+h and ε(u) denotes the symmetric gradient of the displacement field. An equilibrium state û, χ?, of I [·,·,h, σ] is termed one‐phase if χ?≡0 or χ?≡1, two‐phase otherwise. We investigate the way in which the distribution of phases is affected by the choice of the parameters h and σ. Copyright 2002 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper we study well‐posedness of the damped nonlinear wave equation in Ω × (0, ∞) with initial and Dirichlet boundary condition, where Ω is a bounded domain in ?2; ω?0, ωλ1+µ>0 with λ1 being the first eigenvalue of ?Δ under zero boundary condition. Under the assumptions that g(·) is a function with exponential growth at the infinity and the initial data lie in some suitable sets we establish several results concerning local existence, global existence, uniqueness and finite time blow‐up property and uniform decay estimates of the energy. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, we study the existence of anti‐periodic solutions for the first order evolution equation in a Hilbert space H, where G : H → ? is an even function such that ?G is a mapping of class (S+) and f : ? → ? satisfies f(t + T) = –f(t) for any t ∈ ? with f(·) ∈ L2(0, T; H). (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
This paper is concerned with the effect of perturbing Burgers' equation by a small term ?2 Utt. It is shown by means of an energy estimate that the solution of Burgers' equation provides a uniform O (?) approximation of the solution of the full hyperbolic problem. Existence and uniqueness of classical solutions for both problems is proved. A related linear problem is first addressed using the Faedo–Galerkin method to obtain key estimates. Important for the hyperbolic problem is the introduction of an ?-dependent energy in order to track the order-? behaviour of various higher-order derivatives. Subsequent use of Schauder technique and Banach contraction mapping principle yields solutions of the semilinear problems.  相似文献   

17.
A semilinear elliptic equation dΔu ? u + up =0 over the unit ball in ?2 with positive solution and the homogeneous Neumann boundary condition is considered. This equation models applications like chemotactic aggregation and biological pattern formation. Recent theoretical analyses on the equation suggest little continuous solution properties. Focusing on solving the discretized version of the equation, this work proposes an efficient algorithm that combines a newly developed discretization scheme on polar coordinates with a fast Fourier solver. An analysis of the induced matrix structures proves the algorithm converges to positive solutions; the analysis also establishes the q‐axial symmetry and monotonicity behavior of the solutions. Based on the q‐axial symmetry property, Numerical experiments were conducted to visualize various solution forms that are new to the best of our knowledge. The experiments also illustrated sensitivity behavior of the solutions. © 2002 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 18: 261–279, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/num.10006  相似文献   

18.
This article addresses nonlinear wave equations with supercritical interior and boundary sources, and subject to interior and boundary damping. The presence of a nonlinear boundary source alone is known to pose a significant difficulty since the linear Neumann problem for the wave equation is not, in general, well‐posed in the finite‐energy space H1(Ω) × L2(?Ω) with boundary data in L2 due to the failure of the uniform Lopatinskii condition. Further challenges stem from the fact that both sources are non‐dissipative and are not locally Lipschitz operators from H1(Ω) into L2(Ω), or L2(?Ω). With some restrictions on the parameters in the model and with careful analysis involving the Nehari Manifold, we obtain global existence of a unique weak solution, and establish exponential and algebraic uniform decay rates of the finite energy (depending on the behavior of the dissipation terms). Moreover, we prove a blow up result for weak solutions with nonnegative initial energy.  相似文献   

19.
We present new decay estimates of solutions for the mixed problem of the equation vtt?vxx+vt=0, which has the weighted initial data [v0,v1]∈(H10(0,∞) ∩L1,γ(0,∞)) × (L2(0,∞)∩L1,γ(0,∞)) (for definition of L1,γ(0,∞), see below) satisfying γ∈[0,1]. Similar decay estimates are also derived to the Cauchy problem in ?N for uttu+ut=0 with the weighted initial data. Finally, these decay estimates can be applied to the one dimensional critical exponent problem for a semilinear damped wave equation on the half line. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

20.
We establish a Stokes‐Fourier limit for the Boltzmann equation considered over any periodic spatial domain of dimension two or more. Appropriately scaled families of DiPerna‐Lions renormalized solutions are shown to have fluctuations that globally in time converge weakly to a unique limit governed by a solution of Stokes‐Fourier motion and heat equations provided that the fluid moments of their initial fluctuations converge to appropriate L2 initial data of the Stokes‐Fourier equations. Both the motion and heat equations are both recovered in the limit by controlling the fluxes and the local conservation defects of the DiPerna‐Lions solutions with dissipation rate estimates. The scaling of the fluctuations with respect to Knudsen number is essentially optimal. The assumptions on the collision kernel are little more than those required for the DiPerna‐Lions theory and that the viscosity and heat conduction are finite. For the acoustic limit, these techniques also remove restrictions to bounded collision kernels and improve the scaling of the fluctuations. Both weak limits become strong when the initial fluctuations converge entropically to appropriate L2 initial data. © 2001 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号