首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reaction of isatoic anhydride with benzamides is shown to produce 2-aryl-4(3H)quinazolinones. The quinazolinones carrying a 2-(o-hydroxyphenyl) group are obtained in high yields.  相似文献   

2.
Twenty 2,3‐disubstituted‐4(3H)‐quinazolinones were synthesed by one‐pot three‐component method with isatoic anhydride, orthoesters and amines as raw materials in the presence of KAl(SO4)2·12H2O (Alum) under microwave irradiation and solvent‐free conditions. 6‐Bromo‐2‐propyl‐3‐p‐tolylquinazolin‐4(3H)‐one ( 4m ), 6‐bromo‐2‐methyl‐3‐phenethylquinazolin‐4(3H)‐one ( 4n ) and 6‐bromo‐2‐ethyl‐3‐phenethylquinazolin‐4(3H)‐one ( 4o ) were characterized by IR, 1H NMR, 13C NMR and elemental analysis.  相似文献   

3.
The 3‐allyl‐2‐methylquinazolin‐4(3H)‐one ( 1 ), a model functionalized terminal olefin, was submitted to hydroformylation and reductive amination under optimized reaction conditions. The catalytic carbonylation of 1 in the presence of Rh catalysts complexed with phosphorus ligands under different reaction conditions afforded a mixture of 2‐methyl‐4‐oxoquinazoline‐3(4H)‐butanal ( 2 ) and α,2‐dimethyl‐4‐oxoquinazoline‐3(4H)‐propanal ( 3 ) as products of ‘linear’ and ‘branched’ hydroformylation, respectively (Scheme 2). The hydroaminomethylation of quinazolinone 1 with arylhydrazine derivatives gave the expected mixture of [(arylhydrazinyl)alkyl]quinazolinones 5 and 6 , besides a small amount of 2 and 3 (Scheme 3). The tandem hydroformylation/reductive amination reaction of 1 with different amines gave the quinazolinone derivatives 7 – 10 . Compound 10 was used to prepare the chalcones 11a and 11b and pyrazoloquinazolinones 12a and 12b (Scheme 4).  相似文献   

4.
The Michael‐type addition of a 4‐hydroxycoumarin (=4‐hydroxy‐2H‐1‐benzopyran‐2‐one) 1 to a β‐nitrostyrene (=(2‐nitroethenyl)benzene) 2 in the presence of AcONH4 leads to substituted (3E)‐3‐[amino(aryl)methylidene]chroman‐2,4‐diones (=(3E)‐3‐[amino(aryl)methylene]‐2H‐1‐benzopyran‐2,4(3H)‐diones) 4 (Table 1). High yields, short reaction time, and easy workup are advantages of this novel one‐pot three‐component reaction.  相似文献   

5.
4‐Halo‐2(5H)‐furanones were prepared by the halolactonization of 2,3‐allenoic acids. The subsequent Suzuki coupling reaction of 4‐halo 2(5H)‐furanones with aryl boronic acids was carried out to produce 4‐aryl‐2(5H)‐furanones in excellent yields.  相似文献   

6.
A new and convenient method for the preparation of 2‐aryl‐2,3‐dihydro‐1,8‐naphthyridin‐4(1H)‐ones 4 has been developed. Thus, N‐{3‐[(2E)‐3‐arylprop‐2‐enoyl]pyridin‐2‐yl}‐2,2‐dimethylpropanamides 3 are synthesized from commercially available pyridin‐2‐amine using an easily performed three‐step sequence and are subjected to cyclization with deprotection under acidic conditions in H2O to give the desired products. Similarly, 2‐aryl‐2,3‐dihydro‐1,7‐naphthyridin‐4(1H)‐ones 8 and 2‐aryl‐2,3‐dihydro‐1,6‐naphthyridin‐4(1H)‐ones 12 can be prepared from pyridin‐3‐amine and pyridin‐4‐amine, respectively.  相似文献   

7.
A series of 2‐substituted‐4(3H)‐quinazolinones 13‐20 has been synthesized in good yields using the reaction of double lithiated 2‐methylquinazolinone‐4 with a variety of aromatic aldehydes. They have been easily transformed in high yields into the corresponding 2‐substituted conjugated derivatives 21‐28 bearing terminal aryl groups by F3CCOOH mediated dehydration.  相似文献   

8.
3‐Aminoquinoline‐2,4‐diones were stereoselectively reduced with NaBH4 to give cis‐3‐amino‐3,4‐dihydro‐4‐hydroxyquinolin‐2(1H)‐ones. Using triphosgene (=bis(trichloromethyl) carbonate), these compounds were converted to 3,3a‐dihydrooxazolo[4,5‐c]quinoline‐2,4(5H,9bH)‐diones. The deamination of the reduction products using HNO2 afforded mixtures of several compounds, from which 3‐alkyl/aryl‐2,3‐dihydro‐1H‐indol‐2‐ones and their 3‐hydroxy and 3‐nitro derivatives were isolated as the products of the molecular rearrangement.  相似文献   

9.
An efficient synthesis of novel 2‐aryl‐3‐(phenylamino)‐2,3‐dihydroquinazolin‐4(1H)‐one derivatives using KAl(SO4)2.12H2O (Alum) as a catalyst from an aldehyde and 2‐amino‐N‐phenylbenzohydrazine in ethanol is described. All synthesized derivatives were screened for anti‐bacterial activity. Some compounds exhibited promising anti‐bacterial activity with reference to standard antibiotics.  相似文献   

10.
Eight new 2‐methyl‐4(3H)‐quinazolinones (8a‐8d, 9c, 9d, 10c, 10d) with one or two chlorine atoms in the benzene ring and a 5‐methyl‐1,3‐thiazol‐2‐yl, 4‐methyl‐1,3‐thiazol‐2‐yl, and 5‐ethyl‐1,3,4‐thiadiazol‐2‐yl substituent in position 3 of the heterocyclic ring were synthesized and characterized. The two step procedure (Scheme 1) utilizes chlorosubstituted anthranilic acids (3a‐3d) and acetic anhydride as the starting materials, with the respective chlorosubstituted 2‐methyl‐4H‐3,1‐benzoxazin‐4‐ones (4a‐4d) as the intermediates. The quinazoline derivatives were characterized by their melting points, elemental analyses and the mass, ultraviolet, infrared, and 1H and 13C nmr spectra. The new compounds are expected to be biologically active.  相似文献   

11.
The cyclization of aryl ketone anilides 3 with diethyl malonate to affords 4‐hydroxy‐6‐phenyl‐6H‐pyrano[3,2‐c]‐pyridin‐2,5‐diones 4 in good yields. 3‐Acetyl‐4‐hydroxy‐1‐phenylpyridin‐2(1H)‐ones 5 are obtained by ring‐opening reaction of 4‐hydroxy‐6‐phenyl‐6H‐pyrano[3,2‐c]‐pyridin‐2,5‐diones 4 in the presence of 1,2‐diethylene glycol. The reaction of 3‐acetyl‐4‐hydroxy‐1‐phenylpyridin‐2(1H)‐ones 5 with hydroxylamine hydrochloride produces 4‐hydroxy‐3‐[N‐hydroxyethanimidoyl]‐1‐phenylpyridin‐2(1H)‐ones 6 from which 3‐alkyloxyiminoacetyl‐4‐hydroxy‐1‐phenylpyridin‐2(1H)‐ones 7 are obtained by reacting with alkyl bromides or iodides in the presence of anhydrous potassium carbonate with moderate yields. The similar compounds can be synthesized on refluxing 3‐acetyl‐4‐hydroxy‐1‐phenylpyridin‐2(1H)‐ones 5 with substituted hydroxylamine hydrochloride in the presence of sodium bicarbonate with good yields. Most of the synthesized compounds are characterized by IR and NMR spectroscopic methods.  相似文献   

12.
N-(1-Phenyl-3-methylpyrazol-5-yl)-o-aminobenzamide reacted with orthoesters to yield some new 3-pyrazolyl-substituted-4(3H)quinazolinones (VIIa,b,c,d). An alternative synthesis of Vllb was accomplished by reaction of acetylanthranyl with l-phenyl-3-methyl-5-aminopyrazole.  相似文献   

13.
Given the importance of quinazolinones and carbonylative transformations, a palladium‐catalyzed four‐component carbonylative coupling system for the synthesis of diverse 4(3H)‐quinazolinone in a concise and convergent fashion has been developed. Starting from 2‐bromoanilines (1 mmol), trimethyl orthoformate (2 mmol), and amines (1.1 mmol), under 10 bar of CO, the desired products were isolated in good yields in the presence of Pd(OAc)2 (2 mol %), BuPAd2 (6 mol %) in 1,4‐dioxane (2 mL) at 100 °C, using N,N‐diisopropylethylamine (2 mmol) as the base. Notably, the process tolerates the presence of various reactive functional groups and is very selective for quinazolinones, and was used in the synthesis of the precursor to the bioactive dihydrorutaempine.  相似文献   

14.
Zirconocene dichloride (Cp2ZrCl2) in the presence of DMF was found to be a highly efficient catalyst for the synthesis of structurally diverse 2‐substituted quinozolin‐4(3H)‐ones by reaction of anthranilimide with a wide range of aryl aldehydes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
The one‐pot, three‐component, synthesis of a new series of 4‐hydroxy‐3‐(2‐arylimidazo[1,2‐a]pyridin‐3‐yl)quinolin‐2(1H)‐ones in the presence of DABCO as a catalyst has been achieved using aryl glyoxal monohydrates, quinoline‐2,4(1H,3H)‐dione, and 2‐aminopyridine in H2O/EtOH under reflux conditions. The cheapness of organocatalyst, simple workup, operational simplicity, regioselectivity, and high yields are some advantages of this protocol.  相似文献   

16.
A novel series of (4‐fluorophenyl)(4‐(naphthalen‐2‐yl)‐6‐aryl‐2‐thioxo‐2,3‐dihydropyrimidin‐1(6H)‐yl)methanone derivatives were synthesized from reaction of 6‐(naphthalen‐2‐yl)‐4‐aryl‐3,4‐dihydropyrimidine‐2(1H)‐thiones with 4‐fluorobenzoylchloride in dichloromethane in the presence of triethylamine. The synthesized compounds were screened for antibacterial activity against Gram positive bacteria, namely, Staphylococcus aureus ATCC25923 and Listeria monocytogenes MTCC657, and Gram negative bacteria, namely, Escherichia coli ATCC25922 and Klebsiella pneumoniae ATCC700603, respectively. Some of the tested compounds showed significant antimicrobial activity.  相似文献   

17.
2‐Substituted‐2,3‐dihydro‐4(1H)‐quinazolinones were synthesized in high to excellent yields through direct cyclocondensation of 2‐anthranilamide with aldehydes or ketones in the presence of a recyclable cerous methanesulfonate by grinding technique under aqueous conditions.  相似文献   

18.
In this paper, a novel catalyst is introduced based on the immobilization of palladium on modified magnetic graphene oxide nanoparticles. The catalyst is characterized by several methods, including transmission electron microscopy, scanning electron microscopy, X‐ray fluorescence, vibrating‐sample magnetometer, Fourier transform‐infrared and dynamic light scattering (DLS) analysis. The activity of the catalyst was investigated in the synthesis of 4(3H)‐quinazolinones via Pd‐catalyzed carbonylation‐cyclization of N‐(2‐bromoaryl) benzimidamides by Mo (CO)6. The Mo (CO)6 is used as a carbon monoxide source for performing the reaction under mild conditions. The catalyst showed good reusability, and no change in activity was observed after 10 cycles of recovery.  相似文献   

19.
A series of novel fused tetracyclic benzo[4,5]imidazo[1,2‐a]thiopyrano[3,4‐d]pyrimidin‐4(3H)‐one derivatives were synthesized via the reaction of aryl aldehyde, 2H‐thiopyran‐3,5(4H,6H)‐dione, and 1H‐benzo[d]imidazol‐2‐amine in glacial acetic acid. This protocol features mild reaction conditions, high yields and short reaction time.  相似文献   

20.
The pseudo‐Michael reaction of 1‐aryl‐2‐aminoimidazolines‐2 with diethyl ethoxymethylenemalonate (DEEM) was investigated. Extensive structural studies were performed to confirm the reaction course. For derivatives with N1 aromatic substituents, it was found that the reaction course was temperature dependent. When the reaction temperature was held at ?10 °C only the formation of 1‐aryl‐7(1H)‐oxo‐2,3‐dihydroimi‐dazo[1,2‐a]pyrimidine‐6‐carboxylates ( 4 ) was observed in contrast to earlier suggestions. Under the room temperature conditions, the same reaction yielded mixtures, with varying ratio, of isomeric 1‐aryl‐7(1H)‐oxo‐ ( 4a‐4f ) and 1‐aryl‐5(1H)‐oxo‐2,3‐dihydroimidazo[1,2‐a]pyrimidine‐6‐carboxylates ( 5a‐5f ). The molecular structure of selected isomers, 4b and 5c , was confirmed by X‐ray crystallography. Frontal chro‐matography with delivery from the edge was applied for the separation of the isomeric esters. The isomer ratio of the reaction products depended on the character of the substituents on the phenyl ring. The 1‐aryl‐7(1H)‐oxo‐carboxylates ( 4a‐4f ) were preferably when the phenyl ring contained H, 4‐CH3, 4‐OCH3 and 3,4‐Cl2 substituents. Chloro substitution at either position 3 or 4 in the phenyl ring favored the formation of isomers 5a‐5f . The isomer ratios were confirmed both by 1H NMR and chromatography. The reaction of the respective hydrobromides of 1‐aryl‐2‐aminoimidazoline‐2 with DEEM, in the presence of triethylamine, gave selectively 5(1H)‐oxo‐esters ( 5a‐5f ).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号