首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple method for the simultaneous derivatization of carbohydrates, polyols, amines and amino acids using hexamethyldisilazane and N,O‐bis(trimethylsilyl)trifluoroacetamide was developed. This method allows the direct derivatization of urine samples without sample pretreatment before derivatization. The method was successfully used for analysis of the selected metabolites in urine samples of healthy individuals and neonates suffering from galactosemia. The limits of detection by positive chemical ionization gas chromatography with tandem mass spectrometry analysis were in the range of 1.0 mgL‐1 for mannitol to 4.7 mg/L for glucose.  相似文献   

2.
In the present study, different MS methods for the determination of human muscle protein fractional synthesis rate (FSR) using [ring‐13C6]phenylalanine as a tracer were evaluated. Because the turnover rate of human skeletal muscle is slow, only minute quantities of the stable isotopically labeled amino acid will be incorporated within the few hours of a typical laboratory experiment. GC combustion isotope ratio MS (GC‐C‐IRMS) has thus far been considered the ‘gold’ standard for the precise measurements of these low enrichment levels. However, advances in liquid chromatography‐tandem MS (LC‐MS/MS) and GC‐tandem MS (GC‐MS/MS) have made these techniques an option for human muscle FSR measurements. Human muscle biopsies were freeze dried, cleaned, and hydrolyzed, and the amino acids derivatized using either N‐acetyl‐n‐propyl, phenylisothiocyanate, or N‐methyl‐N‐(tert‐butyldimethylsilyl)trifluoroacetamide (MTBSTFA) for GC‐C‐IRMS, LC‐MS/MS, and GC‐MS/MS analysis, respectively. A second derivative, heptafluorobutyric acid (HFBA), was also used for GC‐MS/MS analysis as an alternative for MTBSTFA. The machine reproducibility or the coefficients of variation for delta tracer‐tracee‐ratio measurements (delta tracer‐tracee‐ratio values around 0.0002) were 2.6%, 4.1%, and 10.9% for GC‐C‐IRMS, LC‐MS/MS, and GC‐MS/MS (MTBSTFA), respectively. FSR determined with LC‐MS/MS compared well with GC‐C‐IRMS and so did the GC‐MS/MS when using the HFBA derivative (linear fit Y = 1.08 ± 0.10, X + 0.0049 ± 0.0061, r = 0.89 ± 0.01, P < 0.0001). In conclusion, (1) IRMS still offers the most precise measurement of human muscle FSR, (2) LC‐MS/MS comes quite close and is a good alternative when tissue quantities are too small for GC‐C‐IRMS, and (3) If GC‐MS/MS is to be used, then the HFBA derivative should be used instead of MTBSTFA, which gave unacceptably high variability. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Several extraction and derivatization procedures were evaluated for the quantification of (2-methoxyethoxy)acetic acid (MEAA) in urine. MEAA is a metabolite and a biomarker for exposure to 2-(2-methoxyethoxy)ethanol, a glycol ether with widespread use in various industrial applications and the specific use as an anti-icing additive in the military jet fuel formulation JP-8. Quantification of glycol ether biomarkers is an active area of analytical research. Various sample preparation procedures were evaluated: liquid–liquid extraction (LLE) using ethyl acetate yielded the highest recovery, and solid-phase extraction (SPE) gave low recovery of MEAA. Two derivatization procedures were thoroughly investigated and validated, namely, silylation of MEAA with N-methyl-N-(tert-butyldimethylsilyl)trifluoroacetamide (MTBSTFA), and esterification of MEAA using ethanol. Quantification was performed by gas chromatography (GC) with a mass spectrometer as detector and using a polydimethylsiloxane (HP-1) capillary column. Deuterated 2-butoxyacetic acid (d-BAA) was used as an internal standard. Recovery studies of spiked human urine demonstrated the accuracy and precision of both procedures. The limit of detection (LOD) and other figures of merit for both derivatization procedures will be discussed in detail. Applications of these analysis procedures are also discussed. Disclaimers Mention of company names and/or products does not constitute endorsement by the Centers for Disease Control and Prevention (CDC). The findings and conclusions in this report are those of the authors and do not necessarily represent the views of the National Institute for Occupational Safety and Health.  相似文献   

4.
Stable isotope kinetic studies play an important role in the study of very‐low density lipoprotein (VLDL) metabolism, including basic and clinical research. Today, [1,1,2,3,3‐2H5]glycerol is the most cost‐effective alternative to measure glycerol and triglyceride kinetics. Recycling of glycerol from glycolysis and gluconeogenesis may lead to incompletely labelled tracer molecules. Many existing methods for the measurement of glycerol isotopic enrichment involve the production of glycerol derivatives that result in fragmentation of the glycerol molecule after ionization. It would be favourable to measure the intact tracer molecule since incompletely labelled tracer molecules may be measured as fully labelled. The number of methods available to measure the intact tracer in biological samples is limited. The aim of this project was to develop a gas chromatography/mass spectrometry (GC/MS) method for glycerol enrichment that measures the intact glycerol backbone and is suitable for electron ionization (EI), which is widely available. A previously published method for N‐methyl‐N‐[tert‐butyldimethylsilyl]trifluoroacetamide (MTBSTFA) derivatization was significantly improved; we produced a stable derivative and increased recovery 27‐fold in standards. We used the optimized MTBSTFA method in VLDL‐triglyceride and found that further modification was required to take matrix effects into account. We now have a robust method to measure glycerol isotopic enrichment by GC/EI‐MS that can be used to rule out the known problem of tracer recycling in studies of VLDL kinetics. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
The trimethylsilyl (TMS) derivatives of a mixture of nine bile acids (six free and three conjugated), namely lithocholic, deoxycholic, chenocholic, cholic, hyodeoxycholic, ursodeoxycholic, glycodeoxycholic, glycocholic and glycochenodeoxycholic acids, have been prepared by a new, simple, efficient derivatization procedure, based on the use of a mixture of N -methyl- N -trimethylsilyl-1,1,1- trifluoroacetamide and 1-(trimethylsilyl)imidazole, as the silylating agent. The above-mentioned bile acids were completely trimethylsilylated on all hydroxyl and carboxyl groups whereas carbonyl and amino groups remained untouched.  相似文献   

6.
Summary: Carboxylic acids were efficiently activated with N,N′‐carbonyldiimidazole (CDI) and applied for the acylation of cellulose under homogeneous conditions using dimethyl sulfoxide (DMSO)/tetrabutylammonium fluoride trihydrate (TBAF) as solvent. The simple and elegant method is a very mild and easily applicable tool for the synthesis of pure aliphatic, alicyclic, bulky, and unsaturated cellulose esters with degrees of substitution of up to 1.9. Products are soluble in organic solvents, e.g., DMSO or N,N‐dimethylformamide (DMF). The cellulose esters were characterized by elemental analysis, FT‐IR, 1H and 13C NMR spectroscopy and show no impurities or substructures resulting from side reactions.

The esterification of cellulose using carboxylic acids activated in situ with N,N′‐carbonyldiimidazole.  相似文献   


7.
This paper focuses on the application of principal component analysis (PCA) to facilitate the optimization of the derivatization of oestrogenic steroids—estrone, 17β‐estradiol, estriol, 17α‐ethinylestradiol and diethylstilbestrol—in order to achieve (1) the complete derivatization of all the hydroxyl groups contained in the structure of the compounds and (2) the greatest effectiveness of this reaction. Six different derivatization reagents were used in this study, whereas 2‐methyl‐anthracene was applied as the internal standard to evaluate the effectiveness of the reactions. The experimental data were subjected to PCA. With PCA, the dimensionality of the original multivariable data set could be reduced and the selection of optimum conditions for derivatization facilitated. The mixture of 99% N,O‐bis(trimethylsilyl)trifluoroacetamide + 1% trimethylchlorosilane and pyridine (1:1, v/v) at 60 °C for 30 min has been established as the most convenient and efficient means of derivatizing the aforementioned oestrogenic steroids and diethylstilbestrol; the N‐methyl‐N‐(trimethylsilyl)trifluoroacetamide + pyridine (1:1, v/v) mixture seems to be a promising alternative. The application of PCA for optimizing the derivatization procedure, proposed for the first time in this study, is particularly useful in the development of multicomponent methods across several chemical classes of compounds. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Simplified method for simultaneous identification of proteins, drying oils, waxes, and resins in the works‐of‐art samples was developed. Liquid chromatography with mass spectrometry and gas chromatography with mass spectrometry were used to identify natural materials most frequently encountered in historical paintings. Protein binders were extracted with ammonia and purified using miniaturized solid‐phase microextraction (Omix tips) to efficiently suppress matrix interferences. Zwitterionic stationary phase was used for separation of 16 underivatized amino acids analysis with hydrophilic interaction liquid chromatography that was subsequently quantified with liquid chromatography with mass spectrometry. Gas chromatography with mass spectrometry was used to analyze drying oils, waxes, and resins after one‐step saponification/transmethylation with (m‐trifluoromethylphenyl)trimethylammonium hydroxide (Meth‐Prep II). While the drawback of this reagent is low reactivity towards hydroxyl groups, sample pretreatment was much simpler as compared to the other methods. Fatty acids derivatization with the Meth‐Prep II reagent was compared with their silylation using N,O‐bis(trimethylsilyl) trifluoroacetamide/trimethylchlorosilane mixture. It was concluded that fatty acids analysis as their methyl esters instead of trimethylsilyl esters had a minor impact on the method sensitivity. The developed method was used to analyze samples from 16th and 17th century historical paintings.  相似文献   

9.
Summary Fragmentation patterns of the essential amino acids (AAs) as their silyl derivatives have been obtained with the aid of ion trap detection (ITD). Three derivatizing reagents, hexamethyldisilazane+trifluoroacetic acid (HMDS+TFAA),bis-(trimethylsilyl)trifluoroacetamide (BSTFA) andN-methyl-N-(t-butyldimethylsilyl)trifluoroacetamide (MTBSTFA) were used. Simple and multiple derivatives obtained with each reagent have been investigated, with regard to their sensitivity and selectivity. Our study performed in the concentration range of 5-2000 ng amino acids has shown that, contrary to literature data, thirteen of the twenty-two AAs investigated including the TBDMS derivatives give rise to more than one peak when eluted. As a result of ion/molecule interaction the very informative ions of high masses, ([M]+, [M+TMS/(TBDMS)]+, [M+1]+) are formed with considerable intensities. The fragments [M-CH3]+, [M-C4H9]+, [M-(CH3)2Si]+, [M-TMS/(TBDMS)COO]+, [M-TBDMSOH]+, [M-TBDMSO]+, [M-TBDMSNH]+ and numerous others could be utilized for identification purposes. Presented at Balaton Symposium on High Performance Separation Methods, Siófok, Hungary, September 1–3, 1999  相似文献   

10.
Direct analysis in real‐time mass spectrometry (DART‐MS) with in situ silylation was used for the rapid analysis of the flavonoids silybin ((2R,3R)‐3,5,7‐trihydroxy‐2‐[3‐(4‐hydroxy‐3‐methoxyphenyl)‐2‐hydroxymethyl‐2,3‐dihydrobenzo[1,4]dioxin‐6‐yl]chroman‐4‐one) and rutin (quercetin‐3‐O‐rutinoside). Three different derivatization reagents, hexamethyldisilazane/trimethylchlorosilane/pyridine (HMDS/TMCS/pyridine), N,O‐bis(trimethylsilyl)acetamide/trimethylchlorosilane/N‐trimethylsilyimidazole (BSA/TMCS/TMSI), and N,O‐bis(trimethylsilyl)trifluoroacetamide/trimethylchlorosilane (BSTFA/TMCS), were applied. Silybin and rutin were detected with various degrees of silylation, and the formation of dimers with pyridine and imidazole was also observed. HMDS/TMCS/pyridine was the best choice for the DART‐MS analysis of silybin, and BSA/TMCS/TMSI was the most effective for the detection of rutin. The effects of the DART source temperature on desorption, ionization, in‐source fragmentation, dimer formation, and hydrolysis of the trimethylsilyl groups were also studied. In addition, the collision‐induced dissociation properties of the derivatized silybin and rutin were explored. With our in situ silylation method, the derivatized bioactive compounds in intact medical pills could also be detected by DART‐MS.  相似文献   

11.
Huang  Bin  Pan  Xuejun  Liu  Jingliang  Fang  Kai  Wang  Yu  Gao  Jianpei 《Chromatographia》2010,71(1-2):149-153

Most previously described derivatization procedures with N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) or N-methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA) for the GC–MS analysis of steroids, such as estrone (E1), 17β-estradiol (E2), estriol (E3) and 17α-ethynylestradoil (EE2), used a heating process of 45–80 °C (typically 70 °C) for 25–60 min, usually in combination with a catalyst. However, we found that it is not necessary to heat and add catalyst for the derivatization with BSTFA. Best reaction conditions for MSTFA are heating at 70 °C for 10 min. Derivatization of EE2 using MSTFA without heating results in three products: TMS-E1, mono-TMS-EE2 and di-TMS-EE2.

  相似文献   

12.
An automated method for high‐throughput amino acid analysis, using precolumn derivatization high‐performance liquid chromatography/electrospray mass spectrometry (HPLC/ESI‐MS), was developed and evaluated. The precolumn derivatization step was performed in the reaction port of a home‐built auto‐sampler system. Amino acids were derivatized with 3‐aminopyridyl‐N‐hydroxysuccinimidyl carbamate, and a 3 μm Wakosil‐II 3C8‐100HG column (100 × 2.1 mm i.d.) was used for separation. To achieve a 13 min cycle for each sample, the derivatization and separation steps were performed in parallel. The results of the method evaluation, including the linearity, and the intra‐ and inter‐precision, were sufficient to measure physiological amino acids in human plasma samples. The relative standard deviations of typical amino acids in actual human plasma samples were below 10%. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
A new approach to the selective comparative metabolite profiling of carboxylic acids in rat urine was established using CE‐MS and a method for positively pre‐charged and 2H‐coded derivatization. Novel derivatizing reagents, N‐alkyl‐4‐aminomethyl‐pyridinum iodide (alkyl=butyl, butyl‐d9 or hexyl), containing quaternary amine and stable‐isotope atoms (deuterium), were introduced for the derivatization of carboxylic acids. CE separation in positive polarity showed high reproducibility (0.99–1.32% RSD of migration time) and eliminated problems with capillary coating known in CE‐MS anion analyses. Essentially complete ionization and increased hydrophobicity after the derivatization also enhanced MS detection sensitivity (e.g. formic acid was detected at 0.5 pg). Simultaneous derivatization of one sample using two structurally similar reagents, N‐butyl‐4‐aminomethyl‐pyridinum iodide (BAMP) and N‐hexyl‐4‐aminomethyl‐pyridinum iodide, provided additional information for recognizing a carboxylic acid in an unknown sample. Moreover, characteristic fragmentation acquired by online CE‐MS/MS allowed for identification and categorization of carboxylic acids. Applying this method on rat urine, we found 59 ions matching the characteristic patterns of carboxylic acids. From these 59, 32 ions were positively identified and confirmed with standards. For comparative analysis, 24 standard carboxylic acids were derivatized by chemically identical but isotopically distinct BAMP and N‐butyl‐d9‐4‐aminomethyl‐pyridinium iodide, and their derivatization limits and linearity ranges were determined. Comparative analysis was also performed on two individual urine samples derivatized with BAMP and N‐butyl‐d9‐4‐aminomethyl‐pyridinium iodide. The metabolite profiling variation between these two samples was clearly visualized.  相似文献   

14.
A technique using comprehensive two‐dimensional gas chromatography/time‐of‐flight mass spectrometry (GC × GC/TOFMS) is applied to qualitative and quantitative drug testing. Human serum was ‘spiked’ with known quantities of benzodiazepines and a ‘street heroin’ mixture including some of the major metabolites and impurities. The sample components were extracted from the matrix by solid‐phase extraction (SPE). Constituents containing polar hydroxyl and/or secondary amine groups were derivatised with N‐methyl‐N‐(tert‐butyldimethyl)trifluoroacetamide (MTBSTFA) to improve the chromatographic performance. An orthogonal separation of the matrix constituents was achieved by coupling a DB‐5ms (5% phenyl) to a BPX50 (50% phenyl) GC column. The eluant was focused onto the second column by a twin‐stage cryo‐modulator. Rapid 6 s modulation times were achieved by transfer from a 30 m × 0.25 mm (length × internal diameter) to a 2 m × 0.1 mm column. TOFMS with rapid spectral acquisition (≤500 spectra/s) was employed in the mass range m/z 40–650. A clean mass spectrum was obtained for each analyte using mass spectral deconvolution software. The sensitivity and repeatability of the method were evaluated by the preparation of calibration standards for two benzodiazepines, flunitrazepam and its major metabolite 7‐aminoflunitrazepam (7‐amino‐FN), in the concentration range 5–1000 ng/mL. The limits of detection (LODs) and limits of quantitation (LOQs), calculated by repeat injections (×10) of the lowest standard, were 1.6 and 5.4 ng/mL (flunitrazepam); 2.5 and 8.5 ng/mL (7‐amino‐FN), respectively. There is scope to extend this protocol to screen a large number of drugs and metabolites stored in a library database. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Derivatization of amino acids by 2 M HCl/CH3OH (60 min, 80 °C) followed by derivatization of the intermediate methyl esters with pentafluoropropionic anhydride (PFPA) in ethyl acetate (30 min, 65 °C) is a useful two-step derivatization procedure (procedure A) for their quantitative measurement in biological samples by gas chromatography-mass spectrometry (GC-MS) as methyl ester pentafluoropropionic (PFP) derivatives, (Me)m-(PFP)n. This procedure allows in situ preparation of trideutero-methyl esters PFP derivatives, (d3Me)m-(PFP)n, from synthetic amino acids and 2 M HCl/CD3OD for use as internal standards. However, procedure A converts citrulline (Cit) to ornithine (Orn) and homocitrulline (hCit) to lysine (Lys) due to the instability of their carbamide groups under the acidic conditions of the esterification step. In the present study, we investigated whether reversing the order of the two-step derivatization may allow discrimination and simultaneous analysis of these amino acids. Pentafluoropropionylation (30 min, 65 °C) and subsequent methyl esterification (30 min, 80 °C), i.e., procedure B, of Cit resulted in the formation of six open and cyclic reaction products. The most abundant product is likely to be N5-Carboxy-Orn. The second most abundant product was confirmed to be Orn. The most abundant reaction product of hCit was confirmed to be Lys, with the minor reaction product likely being N6-Carboxy-Lys. Mechanisms are proposed for the formation of the reaction products of Cit and hCit via procedure B. It is assumed that at the first derivatization step, amino acids form (N,O)-PFP derivatives including mixed anhydrides. At the second derivatization step, the Cit-(PFP)4 and hCit-(PFP)4 are esterified on their C1-Carboxylic groups and on their activated Nureido groups. Procedure B also allows in situ preparation of (d3Me)m-(PFP)n from synthetic amino acids for use as internal standards. It is demonstrated that the derivatization procedure B enables discrimination between Cit and Orn, and between hCit and Lys. The utility of procedure B to measure simultaneously these amino acids in biological samples such as plasma and urine remains to be demonstrated. Further work is required to optimize the derivatization conditions of procedure B for biological amino acids.  相似文献   

16.
Benzofurazan derivatization reagents, 4‐[2‐(N,N‐dimethylamino)ethylaminosulfonyl]‐7‐(2‐aminopentylamino)‐2,1,3‐benzoxadiazole (DAABD‐AP) and 4‐[2‐(N,N‐dimethylamino) ethylaminosulfonyl]‐7‐(2‐aminobutylamino)‐2,1,3‐benzoxadiazole (DAABD‐AB), for short‐chain carboxylic acids in liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI‐MS/MS) were synthesized. These reagents reacted with short chain carboxylic acids in the presence of the condensation reagents at 60°C for 60 min. The generated derivatives were separated on the reversed‐phase column and detected by ESI‐MS/MS with the detection limits of 0.1–0.12 pmol on column. Upon collision‐induced dissociation, a single and intense product ion at m/z 151 was observed. These results indicated that DAABD‐AP and DAABD‐AB are suitable as the derivatization reagents in LC/ESI‐MS/MS analysis. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
The effect of background derivatization on the signal enhancement of pesticide residues extracted from edible oil samples was studied by GC with negative chemical ionization MS. The analytes were extracted by a solvent extraction process, and the extract was subjected to rapid low‐temperature fat precipitation. The residual fatty acids were silylated by derivatization with N,O‐bis(trimethylsilyl)trifluoroacetamide. The chromatograms obtained from the derivatized samples showed higher signal intensity and lower detection levels when compared to the direct analysis without derivatization. The sensitivity levels of the method are either better or comparable to that of previously reported methodologies. The LODs of the analyzed organochlorine, organophosphorus, and synthetic pyrethroid residues in sunflower, rice bran, and ground oil samples were in the range of 0.02–0.5 ng/g, and the LOQs were in the range of 0.1–2 ng/g. The intraday and interday accuracies were in the range of 81–116% with RSDs less than 14%. The recoveries obtained were in the range of 53–89% with the RSD values less than 13% for all the studied pesticide residues.  相似文献   

18.
A rapid analytical method for amines and amino acids was developed, involving derivatization with the novel reagent 3‐aminopyridyl‐N‐hydroxysuccinimidyl carbamate (APDS), followed by reversed‐phase high‐performance liquid chromatography and electrospray ionization tandem mass spectrometry (HPLC/ESI‐MS/MS). More than 100 different analytes with amino groups, including amino acids in biological fluids such as mammalian plasma, could be measured within 10 min. The analytes were easily derivatized with APDS under the mild conditions. Selective reaction monitoring of ESI‐MS/MS in positive mode was carried out to include the transitions of all of the protonated molecular ions of analytes derivatized with APDS to the common fragment at m/z 121, which was derived from the amino pyridyl moiety of the reagent. We evaluated the retention time precision, the quantification limits, the linearity, the intra‐ and inter‐day precisions and the accuracy of 22 typical amino acids found in biological fluids, by analyzing a standard amino acid mixture and rat plasma. The intra‐day relative standard deviations (RSDs) of the retention times of the 22 amino acids and their internal standards were within 0.9% and the inter‐day RSDs were less than 1.1%, except for asparagines, with an RSD of 1.9%. The intra‐day and inter‐day RSDs of amino acid analyses in rat plasma were within 8.0% and 4.5%, respectively. The method, which facilitates the amino acid analysis of more than 100 samples in a day, represents an alternative to traditional amino acid analysis techniques, such as chromatography using postcolumn derivatization by ninhydrin. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
The interactions between calcite crystal and seven kinds of phosphonic acids, nitrilotris(methylphosphonic acid) (NTMP), nitrilo‐methyl‐bis(methylphosphonic acid) (NMBMP), N,N‐glycine‐bis(methylphosphonic acid) (GBMP), 1‐ hydroxy‐1,1‐ethylenebis(phosphonic acid) (HEBP), 1‐amino‐1,1‐ethylenebis(phosphonic acid) (AEBP), 1,2‐ethylenediamine‐N,N,N′,N′‐tetrakis(methylphosphonic acid) (EDATMP), and 1,6‐hexylenediamine‐N,N,N′,N′‐tetrakis‐ (methylphosphonic acid) (HDATMP) have been simulated by a molecular dynamics method. The results showed that the binding energy of each scale inhibitor with the (1l?0) (1l?0) face of calcite crystal was higher than that with (104) face, which has been approved by the analysis of pair correlation functions. The sequence of scale inhibition efficiencies for phosphonic acids against calcite scale is as follows: EDATMP>HDATMP>HEBP>NTMP>GBMP>HEBP>NMBMP, and the growth inhibition on the (1l?0) face of calcite was at the leading status. Phosphonic acids deformed during the binding process, and electrovalent bonds formed between the phosphoryl oxygen atoms in phosphonic acids and the calcium ions on calcite crystal.  相似文献   

20.
N-Methyl-N-tert-butyldimethylsilyltrifluoroacetamide (MTBSTFA) is a silylating agent with a range of applicability in clinical and environmental analysis, particularly when substrates possess at least moderate acidity. In this paper, we demonstrate its applicability and limitations as a reagent for environmental analysis by comparing and contrasting two different target analyte problems in a sewage effluent matrix. In one case, electron ionization was used for the determination of three potential endocrine disrupting compounds: 17β-oestradiol, ethynyl oestradiol, and oestrone where the phenolic functionality was silylated with MTBSTFA and compared with results using N,O-bis(trimethylsilyl)-trifluoroacetamide (BSTFA) as the reagent. In this instance, a large volume of effluent was subjected to either solid-phase extraction followed by cleanup using high-performance gel permeation chromatography (AppI) or liquid/liquid extraction followed by SPE fractionation and HPLC fractionation (AppII). The method using BSTFA rather than MTBSTFA was demonstrated to work down to low and sub-ppt levels where the target compounds were found. In a parallel and contrasting study, sewage effluent was analysed for 3,5,6-trichloropyridinol (TCP) by extracting one liter of water using liquid–liquid extraction and determined by GC/MS operated in the negative ion chemical ionization (electron capture) mode after derivatization with MTBSTFA. TCP is the major metabolite of the commonly used insecticide, chlorpyrifos, and herbicide trichlorpyr. The recoveries using dichloromethane as the extractant were 59%, with a relative standard deviation of 2%. This method was used to investigate levels of TCP in sewage effluent. During this analysis, a tentatively identified additional isomer of TCP (X-TCP) was found. The 3,5,6-TCP, the common chlorpyrifos metabolite and the synthesized isomer, 3,4,5-TCP were compared with X-TCP. All three isomers have significantly different retention times. The average level of 3,5,6-TCP was 3.4?ng?L?1, while the level of X-TCP was 39.8?ng?L?1. The two approaches are compared and contrasted with respect to artefact formation and matrix component effects. The reagent MTBSTFA is found to be suitable for quantitative analysis of environmental samples for relatively acidic substrates (e.g. phenols and carboxylic acids). More powerful silylating agents such as N-methyl-N-trimethylacetamide or BSTFA are required for sterols and similar substrates. The stability of the two silylating reagents appears to be similar and practical for accurate quantitative analysis. Differences in EI spectra with respect to fragmentation may also dictate which reagent is preferred.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号