首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For any integer n, let be a probability distribution on the family of graphs on n vertices (where every such graph has nonzero probability associated with it). A graph Γ is ‐almost‐universal if Γ satisifies the following: If G is chosen according to the probability distribution , then G is isomorphic to a subgraph of Γ with probability 1 ‐ . For any p ∈ [0,1], let (n,p) denote the probability distribution on the family of graphs on n vertices, where two vertices u and v form an edge with probability p, and the events {u and v form an edge}; u,vV (G) are mutually independent. For k ≥ 4 and n sufficiently large we construct a ‐almost‐universal‐graph on n vertices and with O(n)polylog(n) edges, where q = ? ? for such k ≤ 6, and where q = ? ? for k ≥ 7. The number of edges is close to the lower bound of Ω( ) for the number of edges in a universal graph for the family of graphs with n vertices and maximum degree k. © 2010 Wiley Periodicals, Inc. Random Struct. Alg., 2010  相似文献   

2.
Given a fixed multigraph H with V(H) = {h1,…, hm}, we say that a graph G is H‐linked if for every choice of m vertices v1, …, vm in G, there exists a subdivision of H in G such that for every i, vi is the branch vertex representing hi. This generalizes the notion of k‐linked graphs (as well as some other notions). For a family of graphs, a graph G is ‐linked if G is H‐linked for every . In this article, we estimate the minimum integer r = r(n, k, d) such that each n‐vertex graph with is ‐linked, where is the family of simple graphs with k edges and minimum degree at least . © 2008 Wiley Periodicals, Inc. J Graph Theory 58: 14–26, 2008  相似文献   

3.
Covering arrays with mixed alphabet sizes, or simply mixed covering arrays, are natural generalizations of covering arrays that are motivated by applications in software and network testing. A (mixed) covering array A of type is a k × N array with the cells of row i filled with elements from ? and having the property that for every two rows i and j and every ordered pair of elements (e,f) ∈ ? × ?, there exists at least one column c, 1 ≤ cN, such that Ai,c = e and Aj,c = f. The (mixed) covering array number, denoted by , is the minimum N for which a covering array of type with N columns exists. In this paper, several constructions for mixed covering arrays are presented, and the mixed covering array numbers are determined for nearly all cases with k = 4 and for a number of cases with k = 5. © 2003 Wiley Periodicals, Inc. J Combin Designs 11: 413–432, 2003; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jcd.10059  相似文献   

4.
In this paper we study the determinacy strength of infinite games in the Cantor space and compare them with their counterparts in the Baire space. We show the following theorems: 1. RCA0 ? ‐Det* ? ‐Det* ? WKL0. 2. RCA0 ? ( )2‐Det* ? ACA0. 3. RCA0 ? ‐Det* ? ‐Det* ? ‐Det ? ‐Det ? ATR0. 4. For 1 < k < ω, RCA0 ? ( )k ‐Det* ? ( )k –1‐Det. 5. RCA0 ? ‐Det* ? ‐Det. Here, Det* (respectively Det) stands for the determinacy of infinite games in the Cantor space (respectively the Baire space), and ( )k is the collection of formulas built from formulas by applying the difference operator k – 1 times. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
A collection of k‐subsets (called blocks) of a v‐set X (v) = {1, 2,…, v} (with elements called points) is called a t‐(v, k, m, λ) covering if for every m‐subset M of X (v) there is a subcollection of with such that every block K ∈ has at least t points in common with M. It is required that vkt and vmt. The minimum number of blocks in a t‐(v, k, m, λ) covering is denoted by Cλ(v, k, t, m). We present some constructions producing the best known upper bounds on Cλ(v, k, t, m) for k = 6, a parameter of interest to lottery players. © 2004 Wiley Periodicals, Inc.  相似文献   

6.
Let α denote a permutation of the n vertices of a connected graph G. Define δα(G) to be the number , where the sum is over all the unordered pairs of distinct vertices of G. The number δα(G) is called the total relative displacement of α (in G). So, permutation α is an automorphism of G if and only if δα(G) = 0. Let π(G) denote the smallest positive value of δα(G) among the n! permutations α of the vertices of G. A permutation α for which π(G) = δα(G) has been called a near‐automorphism of G [ 2 ]. We determine π(K) and describe permutations α of K for which π(K) = δα(K). This is done by transforming the problem into the combinatorial optimization problem of maximizing the sums of the squares of the entries in certain t by t matrices with non–negative integer entries in which the sum of the entries in the ith row and the sum of the entries in the ith column each equal to ni,1≤it. We prove that for positive integers, n1n2≤…≤nt, where t≥2 and nt≥2, where k0 is the smallest index for which n = n+1. As a special case, we correct the value of π(Km,n), for all m and n at least 2, given by Chartrand, Gavlas, and VanderJagt [ 2 ]. © 2002 Wiley Periodicals, Inc. J Graph Theory 41: 85–100, 2002  相似文献   

7.
A graph G is (k1, k2, …, kt)-saturated if there exists a coloring C of the edges of G in t colors 1, 2, …, t in such a way that there is no monochromatic complete ki-subgraph K of color i, 1 ? i ? t, but the addition of any new edge of color i, joining two nonadjacent vertices in G, with C, creates a monochromatic K of color i, 1 ? i ? t. We determine the maximum and minimum number of edges in such graphs and characterize the unique extremal graphs.  相似文献   

8.
L. Ji 《组合设计杂志》2007,15(2):151-166
A (2,3)‐packing on X is a pair (X, ), where is a set of 3‐subsets (called blocks) of X, such that any pair of distinct points from X occurs together in at most one block. Its leave is a graph (X,E) such that E consists of all the pairs which do not appear in any block of . In this article, we shall construct a set of 6k ? 2 disjoint (2,3)‐packings of order 6k + 4 with K1,3 ∪ 3kK2 or G1 ∪ (3k ? 1)K2 as their common leave for any integer k ≥ 1 with a few possible exceptions (G1 is a special graph of order 6). Such a system can be used to construct perfect threshold schemes as noted by Schellenberg and Stinson ( 22 ). © 2006 Wiley Periodicals, Inc. J Combin Designs  相似文献   

9.
Given n Boolean variables x1,…,xn, a k‐clause is a disjunction of k literals, where a literal is a variable or its negation. Suppose random k‐clauses are generated one at a time and an online algorithm accepts or rejects each clause as it is generated. Our goal is to accept as many randomly generated k‐clauses as possible with the condition that it must be possible to satisfy every clause that is accepted. When cn random k‐clauses on n variables are given, a natural online algorithm known as Online‐Lazy accepts an expected (1 ? )cn + akn clauses for some constant ak. If these clauses are given offline, it is possible to do much better, (1 ? )cn + Ω( )n can be accepted whp . The question of closing the gap between ak and Ω( ) for the online version remained open. This article shows that for any k ≥ 1, any online algorithm will accept less than (1 ? )cn + (ln 2)n k‐clauses whp , closing the gap between the constant and Ω( ). Furthermore we show that this bound is asymptotically tight as k → ∞. © 2007 Wiley Periodicals, Inc. Random Struct. Alg., 2008  相似文献   

10.
Let Vn(q) denote a vector space of dimension n over the field with q elements. A set of subspaces of Vn(q) is a partition of Vn(q) if every nonzero element of Vn(q) is contained in exactly one element of . Suppose there exists a partition of Vn(q) into xi subspaces of dimension ni, 1 ≤ ik. Then x1, …, xk satisfy the Diophantine equation . However, not every solution of the Diophantine equation corresponds to a partition of Vn(q). In this article, we show that there exists a partition of Vn(2) into x subspaces of dimension 3 and y subspaces of dimension 2 if and only if 7x + 3y = 2n ? 1 and y ≠ 1. In doing so, we introduce techniques useful in constructing further partitions. We also show that partitions of Vn(q) induce uniformly resolvable designs on qn points. © 2007 Wiley Periodicals, Inc. J Combin Designs 16: 329–341, 2008  相似文献   

11.
In any r‐uniform hypergraph for 2 ≤ tr we define an r‐uniform t‐tight Berge‐cycle of length ?, denoted by C?(r, t), as a sequence of distinct vertices v1, v2, … , v?, such that for each set (vi, vi + 1, … , vi + t ? 1) of t consecutive vertices on the cycle, there is an edge Ei of that contains these t vertices and the edges Ei are all distinct for i, 1 ≤ i ≤ ?, where ? + jj. For t = 2 we get the classical Berge‐cycle and for t = r we get the so‐called tight cycle. In this note we formulate the following conjecture. For any fixed 2 ≤ c, tr satisfying c + tr + 1 and sufficiently large n, if we color the edges of Kn(r), the complete r‐uniform hypergraph on n vertices, with c colors, then there is a monochromatic Hamiltonian t‐tight Berge‐cycle. We prove some partial results about this conjecture and we show that if true the conjecture is best possible. © 2008 Wiley Periodicals, Inc. J Graph Theory 59: 34–44, 2008  相似文献   

12.
We study the asymptotic behavior of the number Nk,n of nodes of given degree k in unlabeled random trees, when the tree size n and the node degree k both tend to infinity. It is shown that Nk,n is asymptotically normal if and asymptotically Poisson distributed if . If , then the distribution degenerates. The same holds for rooted, unlabeled trees and forests. © 2006 Wiley Periodicals, Inc. Random Struct. Alg., 2006  相似文献   

13.
Given lists of available colors assigned to the vertices of a graph G, a list coloring is a proper coloring of G such that the color on each vertex is chosen from its list. If the lists all have size k, then a list coloring is equitable if each color appears on at most vertices. A graph is equitably k-choosable if such a coloring exists whenever the lists all have size k. We prove that G is equitably k-choosable when unless G contains or k is odd and . For forests, the threshold improves to . If G is a 2-degenerate graph (given k ≥ 5) or a connected interval graph (other than ), then G is equitably k-choosable when . © 2003 Wiley Periodicals, Inc. J Graph Theory 44: 166–177, 2003  相似文献   

14.
A p‐list assignment L of a graph G assigns to each vertex v of G a set of permissible colors. We say G is L‐(P, q)‐colorable if G has a (P, q)‐coloring h such that h(v) ? L(v) for each vertex v. The circular list chromatic number of a graph G is the infimum of those real numbers t for which the following holds: For any P, q, for any P‐list assignment L with , G is L‐(P, q)‐colorable. We prove that if G has an orientation D which has no odd directed cycles, and L is a P‐list assignment of G such that for each vertex v, , then G is L‐(P, q)‐colorable. This implies that if G is a bipartite graph, then , where is the maximum average degree of a subgraph of G. We further prove that if G is a connected bipartite graph which is not a tree, then . © 2008 Wiley Periodicals, Inc. J Graph Theory 59: 190–204, 2008  相似文献   

15.
For any graph G, let ni be the number of vertices of degree i, and . This is a general lower bound on the irregularity strength of graph G. All known facts suggest that for connected graphs, this is the actual irregularity strength up to an additive constant. In fact, this was conjectured to be the truth for regular graphs and for trees. Here we find an infinite sequence of trees with λ(T) = n1 but strength converging to . © 2004 Wiley Periodicals, Inc. J Graph Theory 45: 241–254, 2004  相似文献   

16.
In 2000, Enomoto and Ota [J Graph Theory 34 (2000), 163–169] stated the following conjecture. Let G be a graph of order n, and let n1, n2, …, nk be positive integers with \begin{eqnarray*}\sum\nolimits_{{{i}} = {{1}}}^{{{k}}} {{n}}_{{{i}}} = {{n}}\end{eqnarray*}. If σ2(G)≥n+ k?1, then for any k distinct vertices x1, x2, …, xk in G, there exist vertex disjoint paths P1, P2, …, Pk such that |Pi|=ni and xi is an endpoint of Pi for every i, 1≤ik. We prove an asymptotic version of this conjecture in the following sense. For every k positive real numbers γ1, …, γk with \begin{eqnarray*}\sum\nolimits_{{{i}} = {{1}}}^{{{k}}} \gamma_{{{i}}} = {{1}}\end{eqnarray*}, and for every ε>0, there exists n0 such that for every graph G of order nn0 with σ2(G)≥n+ k?1, and for every choice of k vertices x1, …, xkV(G), there exist vertex disjoint paths P1, …, Pk in G such that \begin{eqnarray*}\sum\nolimits_{{{i}} = {{1}}}^{{{k}}} |{{P}}_{{{i}}}| = {{n}}\end{eqnarray*}, the vertex xi is an endpoint of the path Pi, and (γi?ε)n<|Pi|<(γi + ε)n for every i, 1≤ik. © 2009 Wiley Periodicals, Inc. J Graph Theory 64: 37–51, 2010  相似文献   

17.
We consider the minimization of in a perforated domain of among maps that are incompressible (det ) and invertible, and satisfy a Dirichlet boundary condition u = g on ?Ω. If the volume enclosed by g (?Ω) is greater than |Ω|, any such deformation u is forced to map the small holes Bε( a i) onto macroscopically visible cavities (which do not disappear as ε → 0). We restrict our attention to the critical exponent p = n, where the energy required for cavitation is of the order of and the model is suited, therefore, for an asymptotic analysis (v1,…, vM denote the volumes of the cavities). In the spirit of the analysis of vortices in Ginzburg‐Landau theory, we obtain estimates for the “renormalized” energy showing its dependence on the size and the shape of the cavities, on the initial distance between the cavitation points a 1,…, a M, and on the distance from these points to the outer boundary ?Ω. Based on those estimates we conclude, for the case of two cavities, that either the cavities prefer to be spherical in shape and well separated, or to be very close to each other and appear as a single equivalent round cavity. This is in agreement with existing numerical simulations and is reminiscent of the interaction between cavities in the mechanism of ductile fracture by void growth and coalescence. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
In this paper we prove a Tauberian type theorem for the space L ( H n ). This theorem gives sufficient conditions for a L ( H n ) submodule J ? L ( H n ) to make up all of L ( H n ). As a consequence of this theorem, we are able to improve previous results on the Pompeiu problem with moments on the Heisenberg group for the space L( H n ). In connection with the Pompeiu problem, given the vanishing of integrals ∫ z m L g f ( z , 0) ( z ) = 0 for all g ∈ H n and i = 1, 2 for appropriate radii r1 and r2, we now have the (improved) conclusion f ≡ 0, where = · · · and form the standard basis for T(0,1)( H n ). (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
We prove that if there exists a t − (v, k, λ) design satisfying the inequality for some positive integer j (where m = min{j, vk} and n = min {i, t}), then there exists a t − (v + j, k, λ ()) design. © 1999 John Wiley & Sons, Inc. J Combin Designs 7: 107–112, 1999  相似文献   

20.
The interval number of a graph G, denoted by i(G), is the least natural number t such that G is the intersection graph of sets, each of which is the union of at most t intervals. Here we settle a conjecture of Griggs and West about bounding i(G) in terms of e, that is, the number of edges in G. Namely, it is shown that i(G) ≤ + 1. It is also observed that the edge bound induces i(G) ≤ , where γ(G) is the genus of G. © 1999 John Wiley & Sons, Inc. J Graph Theory 32: 153–159, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号