首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
4‐Methyl‐6,8‐dihydroxy‐7H‐benz[de]anthracen‐7‐one was isolated from the sap of Aloe by column chromatography. Its 1H and 13C NMR spectra were completely assigned by utilizing two‐dimensional 1H‐detected heteronuclear one‐bond (HMQC) and multiple‐bond (HMBC) chemical shift correlation experiments together with 1H–1H COSY and DEPT techniques. These techniques were also valuable in assigning the protons and carbons of those benzanthrone compounds which were previously incompletely reported because of the overlap of proton signals. The molecular structure was elucidated by 2D NMR analysis. The spectral properties (MS, IR and UV) are also presented. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
We report the total assignments of the 13C and 1H NMR spectra of some 4‐methyl‐2‐oxo‐(2H)‐pyrido[1,2‐a]pyrimidine and 2‐methyl‐4‐oxo‐(4H)‐pyrido[1,2‐a]pyrimidine derivatives. The products were characterized by 1H and 13C NMR and reported data for similar compounds. No comparative data for the two sets of isomeric compounds with respect to 13C and 1H NMR have been reported to date. We made some detailed studies of the 2D NMR spectra of these compounds and observed that assignments made for non‐protonated carbon atoms by us and those reported in the literature for similar compounds need correction. The revised assignments were made on the basis of heteronuclear single quantum correlation (HSQC) and heteronuclear multiple bond correlation (HMBC) techniques. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
An unsymmetrical heterocyclic diamine, 1,2‐dihydro‐2‐(4‐aminophenyl)‐4‐[4‐(4‐aminophenoxy)‐4‐phenyl]‐(2H)phthalazin‐1‐one, was synthesized. Its 1H and 13C NMR spectra were completely assigned by utilizing the two‐dimensional heteronuclear 13C–1H multiple‐bond coherence (HMBC) spectroscopy, and heteronuclear 13C–1H one‐bond correlation spectroscopy, homonuclear shift correlation spectroscopy (H,H‐COSY) and rotating frame Overhauser enhancement spectroscopy (ROESY). The structure of the compound was shown to be the phthalazinone rather than the phthalazine ether from cross peaks and chemical shifts of the protons. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
A simple and robust solvent suppression technique that enables acquisition of high‐quality 1D 1H nuclear magnetic resonance (NMR) spectra of alcoholic beverages on cryoprobe instruments was developed and applied to acquire NMR spectra of Scotch Whisky. The method uses 3 channels to suppress signals of water and ethanol, including those of 13C satellites of ethanol. It is executed in automation allowing high throughput investigations of alcoholic beverages. On the basis of the well‐established 1D nuclear Overhauser spectroscopy (NOESY) solvent suppression technique, this method suppresses the solvent at the beginning of the pulse sequence, producing pure phase signals minimally affected by the relaxation. The developed solvent suppression procedure was integrated into several homocorrelated and heterocorrelated 2D NMR experiments, including 2D correlation spectroscopy (COSY), 2D total correlation spectroscopy (TOCSY), 2D band‐selective TOCSY, 2D J‐resolved spectroscopy, 2D 1H, 13C heteronuclear single‐quantum correlation spectroscopy (HSQC), 2D 1H, 13C HSQC‐TOCSY, and 2D 1H, 13C heteronuclear multiple‐bond correlation spectroscopy (HMBC). A 1D chemical‐shift‐selective TOCSY experiments was also modified. The wealth of information obtained by these experiments will assist in NMR structure elucidation of Scotch Whisky congeners and generally the composition of alcoholic beverages at the molecular level.  相似文献   

5.
The I2‐catalyzed preparation of spiro[1,3,4‐benzotriazepine‐2,3′‐indole]‐2′,5(1H,1′H)‐diones from 2‐aminobenzohydrazide and isatins in MeCN at room temperature in good‐to‐excellent yields is described. The structure of 3 was corroborated spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS data). A plausible mechanism for this type of reaction is proposed (Scheme 2).  相似文献   

6.
An efficient route to 2′,3′‐dihydro‐2′‐thioxospiro[indole‐3,6′‐[1,3]thiazin]‐2(1H)‐one derivatives is described. It involves the reaction of isatine, 1‐phenyl‐2‐(1,1,1‐triphenyl‐λ5‐phosphanylidene)ethan‐1‐one, and different amines in the presence of CS2 in dry MeOH at reflux (Scheme 1). The alkyl carbamodithioate, which results from the addition of the amine to CS2, is added to the α,β‐unsaturated ketone, resulting from the reaction between 1‐phenyl‐2‐(1,1,1‐triphenyl‐λ5‐phosphanylidene)ethan‐1‐one and isatine, to produce the 3′‐alkyl‐2′,3′‐dihydro‐4′‐phenyl‐2′‐thioxospiro[indole‐3,6′‐[1,3]thiazin]‐2(1H)‐one derivatives in excellent yields (Scheme 2). Their structures were corroborated spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS) and by elemental analyses.  相似文献   

7.
Structure elucidation of 9‐S and 9‐R oxirane derivatives of ascomycin, a 23‐membered immunomodulating macrolactam, was performed using NMR spectroscopy. The total 1H and 13C signal assignments required the gradient‐selected versions of COSY (gs‐COSY), heteronuclear multiple quantum‐correlation spectroscopy (gs‐HSQC), heteronuclear multiple‐bond correlation spectroscopy (gs‐HMBC), and nuclear Overhauser methods. The data sets then were used to examine the dependence of ketone–hemiketal and cistrans amide equilibria on the substitution pattern and the absolute configuration of the chiral oxirane. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
To further extend temperature range of application and low temperature performance of the ethylene‐styrene copolymers, a series of poly(ethylene‐styrene‐propylene) samples with varying monomer compositions and relatively low glass‐transition temperatures (Tg = −28 – 22 °C) were synthesized by Me2Si(Me4Cp)(N‐t‐Bu)TiCl2/MMAO system. Since the 13C NMR spectra of the terpolymers were complex and some new resonances were present, 2D‐1H/13C heteronuclear single quantum coherence and heteronuclear multiple bond correlation experiments were conducted. A complete 13C NMR characterization of these terpolymers was performed qualitatively and quantitatively, including chemical shifts, triad sequence distributions, and monomer average sequence lengths. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 340–350  相似文献   

9.
This paper describes a method of preparation of new 3,5′‐dioxo‐2′‐phenyl‐1,3‐dihydrospiro[indene‐2,4′‐[1,3]oxazol]‐1‐yl acetate and its 5‐chloro‐ and bromoderivatives as products of interaction of N‐benzoylglycine (hippuric acid) with corresponding ortho‐formylbenzoic acids. The reaction carried out in acetic anhydride media in the presence of piperidine as catalyst. The novel spirocompounds were purified by column chromatography from multicomponent reaction mixtures. The composition of the spiro‐products was confirmed by C, H, N element analysis. The structure was established by IR, MS, 1H‐ and 13C‐NMR analysis including COSY 1H‐13C experiments.  相似文献   

10.
Copolymerization of acrylonitrile and ethyl methacrylate using atom transfer radical polymerization (ATRP) at ambient temperature was carried out under optimized reaction conditions using 2‐bromopropionitrile as initiator and CuBr/2,2′‐bipyridine as the catalyst system. The copolymer composition, obtained from 1H NMR spectra, were used to determine the monomer reactivity ratios (rA = 0.68 and rE = 1.75) involved in ATRP. Two‐dimensional NMR (heteronuclear single quantum correlation and total correlated spectroscopy) experiments were employed to resolve the highly overlapping and complex 1H and 13C{1H} NMR spectra of copolymers. The complete spectral assignments of the quaternary carbons viz. carbonyl and nitrile carbons were done with the help of heteronuclear multiple bond correlation spectra. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2955–2971, 2006  相似文献   

11.
The conformation of [bis‐(N,N′‐difluoroboryl)]‐3,3′‐diethyl‐4,4′,8,8′,9,9′,10,10′‐octamethyl‐2,2′‐bidipyrrin (1) in solution was studied by analyzing the 13C? 19F and 19F? 19F through‐space spin–spin couplings. The 1H and 13C NMR spectra were assigned on the basis of nuclear Overhauser effect spectroscopy (NOESY), heteronuclear single‐quantum correlation (HSQC), and heteronuclear multiple‐bond correlation (HMBC) experiments. The 19F spectrum of 1 was compared with that of 2‐ethyl‐1,3,5,6,7‐pentamethyl‐4,4‐difluoro‐4‐bor‐3a,4a‐diaza‐s‐indacen (2). The 19F? 19F through‐space spin? spin coupling in 1 was thus assigned and the coupling constant was obtained by simulating the coupling patterns. The obtained conformation of 1 was compared with those of the known complexes [bis‐(N,N′‐difluoroboryl)]‐3,3′,8,8′,9,9′‐hexaethyl‐4,4′,10,10′‐tetramethyl‐6,6′‐(4‐methylphenyl)‐2,2′‐bidipyrrin (3)and [bis‐(N,N′‐difluoroboryl)]‐9,9′‐diethyl‐4,4′,8,8′,10,10′‐hexamethyl‐3,3′‐bis(methoxycarbonylethyl)‐2,2′‐bidipyrrin (4). The conformational dynamics of 1, 3, and 4 was surveyed by observing the temperature dependence of the through‐space coupling constants between 253 and 333 K. The 13C? 19F and 19F? 19F through‐space spin–spin couplings thus confirm similar conformations of different BisBODIPYs in solution in contrast to earlier findings in the solid state. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Assignments of 1H and 13C NMR chemical shifts were made by means of heteronuclear single quantum coherence (HSQC) and heteronuclear multiple bond correlation (HMBC) experiments for ondansetron, and by means of 1H-1H correlation spectroscopy (1H-1H COSY) and two-dimensional nuclear Overhauser effect spectroscopy (NOESY) experiments for two novel metabolites (M1 and M2) of ondansetron. These two metabolites were isolated for the first time from Mucor circinelloides.  相似文献   

13.
Reactions of rhodium(III) halides with multidentate N,S‐heterocycles, (LH3) 1,3,5‐tris(benzimidazolyl)benzene (L1H3; 1 ), 1,3,5‐tris(N‐methylbenzimidazolyl) benzene (L2H3; 2 ) and 1,3,5‐tris(benzothiazolyl)benzene (L3H3; 3 ), in the molar ratio 1:1 in methanol–chloroform produced mononuclear cyclometallated products of the composition [RhX2(LH2)(H2O)] (X = Cl, Br, I; LH2 = L1H2, L2H2, L3H2). When the metal to ligand ( 1–3 or 1,2,4,5‐tetrakis(benzothiazolyl)benzene [L4H2; 4 ]) molar ratio was 2:1, the reactions yielded binuclear complexes of the compositions [Rh2Cl5(LH2)(H2O)3] (LH2 = L1H2, L2H2, L3H2) and [Rh2X4(L4)(H2O)2] (X = Cl, Br, I). Elemental analysis, IR and 1H nuclear magnetic resonance (NMR) chemical shifts supported the binuclear nature of the complexes. Cyclometallation was detected by conventional 13C NMR spectra that showed a doublet around ~190 ppm. Cyclometallation was also detected by gradient‐enhanced heteronuclear multiple bond correlation (g‐HMBC) experiment that showed cross‐peaks between the cyclometallated carbon and the central benzene ring protons of 1–3 . Cyclometallation was substantiated by two‐dimensional 1H? 1H correlated experiments (gradiant‐correlation spectroscopy and rotating frame Overhauser effect spectroscopy) and 1H? 13C single bond correlated two‐dimensional NMR experiments (gradient‐enhanced heteronuclear single quantum coherence). The 1H? 15N g‐HMBC experiment suggested the coordination of the heterocycles to the metal ion via tertiary nitrogen. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
The luminescent complex [4‐(3‐hydroxypropyl)‐4′‐methyl‐2,2′‐bipyridine]‐bis(2,2′‐bipyridine)‐ruthenium(II)‐bis(hexafluoroantimonate) and its methacrylate derivative were successfully synthesized and fully characterized by two‐dimensional 1H and 13C{1H} NMR techniques [correlation spectroscopy (COSY) and heteronuclear multiple‐quantum coherence experiment (HMQC)], as well as matrix‐assisted laser desorption ionization time‐of‐flight mass spectrometry. The respective labeled methyl methacrylate‐ruthenium(polypyridyl) copolymers were obtained by free‐radical copolymerization with methyl methacrylate and were characterized utilizing NMR, IR, and UV–visible spectroscopy and gel permeation chromatography. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3954–3964, 2003  相似文献   

15.
Endocyclic sulfonamide templates bearing both an exocyclic ketone function and an internal olefin underwent reaction with a variety of hydroxylamines to effect an intramolecular nitrone–olefin cycloaddition to afford a new class of compounds suitable for derivatization by high‐throughput medicinal chemistry. Structural elucidation via complete assignment of the 1H and 13C NMR spectra of this new class of compounds was achieved using gradient‐COSY, gradient heteronuclear multiple quantum‐coherence spectroscopy and gradient heteronuclear multiple bond correlation spectroscopy. Additionally, double pulsed field gradient spin echo–nuclear Overhauser effect experiments were carried out in order to study the spatial conformation of this new type of molecule and assess the stereo‐ and regio‐selectivity of the chemical transformation. The unequivocal molecular framework and structural conformation was confirmed by X‐ray diffraction. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
The synthesis of two O‐2′,3′‐cyclic ketals, i.e., 5 and 6 , of the cytostatic 5‐fluorouridine ( 2 ), carrying a cyclopentane and/or a cyclohexane ring, respectively, is described. The novel compounds were characterized by 1H‐, 19F‐, and 13C‐NMR, and UV spectroscopy, as well as by elemental analyses. Their crystal structures were determined by X‐ray analysis. Both compounds 5 and 6 show an anti‐conformation at the N‐glycosidic bond which is biased from +ac to +ap compared to the parent nucleoside 2 . The sugar puckering is changed from 2′E to 3′E going along with a reduction of the puckering amplitude τm by ca. 10–13° due to the ketalization. The conformation about the sugar exocyclic bond C(4′)? C(5′) of 5 and 6 remains unchanged, i.e., g+, compared with compound 2 .  相似文献   

17.
N‐vinyl‐2‐pyrrolidone/methyl acrylate (V/M) copolymers were prepared by free‐radical bulk polymerization using benzoyl peroxide as an initiator. The copolymer composition of these copolymers was calculated from 1H NMR spectra. The radical reactivity ratios for N‐vinyl‐2‐pyrrolidone (V) and methyl acrylate (M) were rV = 0.09, rM = 0.44. These reactivity ratios for the copolymerization of V and M were determined using the Kelen–Tudos and nonlinear least‐squares error‐in‐variable methods. The 13C{1H} and 1H NMR spectra of these copolymers overlapped and were complex. The complete spectral assignment of the 13C and 1H NMR spectra were done with distortionless enhancement by polarization transfer and two dimensional 13C‐1H heteronuclear single quantum correlation spectroscopic experiments. The two‐dimensional 1H‐1H homonuclear total correlation spectroscopic NMR spectrum showed the various bond interactions, thus inferring the possible structure of the copolymers. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2225–2236, 2002  相似文献   

18.
N‐vinyl‐2‐pyrrolidone/methyl acrylate (V/M) copolymers were prepared by free‐radical bulk polymerization using benzoyl peroxide as an initiator. The copolymer composition of these copolymers was calculated from 1H NMR spectra. The radical reactivity ratios for N‐vinyl‐2‐pyrrolidone (V) and methyl acrylate (M) were rV = 0.09, rM = 0.44. These reactivity ratios for the copolymerization of V and M were determined using the Kelen–Tudos and nonlinear least‐squares error‐in‐variable methods. The 13C{1H} and 1H NMR spectra of these copolymers overlapped and were complex. The complete spectral assignment of the 13C and 1H NMR spectra were done with distortionless enhancement by polarization transfer and two dimensional 13C‐1H heteronuclear single quantum correlation spectroscopic experiments. The two‐dimensional 1H‐1H homonuclear total correlation spectroscopic NMR spectrum showed the various bond interactions, thus inferring the possible structure of the copolymers. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2225–2236, 2002  相似文献   

19.
Five new glucosylated steroidal glycosides, cantalasaponin I‐B1 (1), I‐B2 (2), I‐B3 (3), I‐B4 (4) and I‐B5 (5), were isolated and purified from the transformed product of the cantalasaponin I by using Toruzyme 3.0 l as biocatalyst. Their structures were elucidated on the basis of high‐resolution electrospray ionization mass spectrometry, one‐dimensional (1H and 13C NMR) and two‐dimensional [COSY, heteronuclear single‐quantum correlation (HSQC), HMBC and HSQC‐TOCSY] NMR spectral analyses and chemical evidence. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Complete 1H and 13C resonance assignments were carried out for a new type of carboxyl‐linked glucosides of chenodeoxycholic (3α,7α‐dihydroxy‐5β‐cholan‐24‐oic) and hyodeoxycholic (3α,6α‐dihydroxy‐5β‐cholan‐24‐oic) acids by using several homonuclear (1H–1H) and heteronuclear (1H–13C) 2D NMR techniques. Differences in the 1H and 13C resonances between the α‐ and β‐anomers of the ester glucosides of bile acids were clarified for the first time. A comparison of the 1H and 13C signal shifts induced by β‐D ‐glucosidation at the 24‐carboxyl and 3α‐hydroxyl groups in the parent 5β‐cholanoic acid was also made. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号