首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Strong electrolyte temperature‐sensitive hydrogels were synthesized by radiation polymerization using N‐isopropylacrylamide and sodium 2‐acrylamido‐2‐methylpropanesulfonate. The influence of irradiation dose and mole ratio of the monomers was examined by swelling measurements in aqueous solution and organic solvents. The hydrogels without any pollution were applied in concentrating protein.

Effect of irradiation dose on swelling ratios of P(NIPA‐co‐NaAMPS) hydrogels.  相似文献   


2.
Hydrogel‐forming copolymers based on chitosan grafted with different amounts of polyacrylamide were synthesized and its swelling capacity determined in distilled water, sodium chloride solutions, as well as in buffer solutions at pH 1.2 and 8.0. The resulting products are highly efficient as hydrogel‐forming materials with swelling at equilibrium going approximately from 300 to 3 000 times the volume of the dry solid polymer in all the investigated media. The products, different to usual hydrogels, swells considerably more and quickly in electrolyte‐containing solutions compared to in distilled water. This has been attributed to their structure that contains non‐ionic polyacrylamide macromolecules grafted onto the trunk polymer chitosan, which is cationic in nature. In‐vitro drug‐release behavior of formulations containing grafted copolymers have been tested using theophylline as a water‐soluble drug and the results were compared with similar formulations containing unmodified chitosan. It was found that tablets based on formulations containing grafted chitosan show higher erosion and swelling compared with those of the matrix based on unmodified chitosan, leading to a higher fraction of theophylline released. It can be concluded that formulations based on the synthesized copolymers are potentially useful for fluid absorbency and as prolonged drug‐release matrices.

The swelling of one of the hydrogels studied here.  相似文献   


3.
Hydrogels were successfully synthesized utilizing CO2 as a gellant. A cross‐linking reaction of polyallylamine (PAA) with CO2 in the presence of 1,8‐Diazabicyclo[5,4,0]‐undec‐7‐ene (DBU) provided hydrogels bearing urea cross‐linking points and residual amino groups in the side chains. The obtained hydrogels absorbed CO2 at 25 °C and gave a maximum absorption four times larger than that of PAA aqueous solution and 2.8 times larger than that of the most commonly used absorbent, monoethanolamine. The PAA hydrogels desorbed the absorbed CO2 completely under a N2 atmosphere at 120 °C, and could be repeatedly recycled without loss of efficiency, indicating their potential application as recyclable CO2 absorption materials.

  相似文献   


4.
A novel fluorescent nanoparticle with reversible on‐off switching properties has been synthesized. Three different wavelengths of light are used for switching‐on light, switching‐off light and excitation light, respectively. Thus, when this particle is used as a fluorescent probe by irradiation of the excitation light, the on‐off status can be maintained. We also showed that the on‐off status of the fluorescent particle even embedded in hydrogels can be remotely controlled by using two different wavelengths of light. These results promise that this kind of fluorescent particles will introduce a new concept and it will possibly be applied as a novel fluorescent probe, a photo memory, and a switching devise for photonics.

  相似文献   


5.
Carbon black (CB) nanoparticles were encapsulated by poly(vinyl alcohol) (PVA) by a simple method of coacervation. Transmission electron microscopy (TEM) images clearly demonstrated that the successful encapsulation of PVA happened at the surfaces of CB nanoparticles. The particle‐size distribution measurements indicated that the diameters of the obtained PVA‐encapsulated CB (CB@PVA) nanoparticles were distributed within the nanoscale dimension. This strategy avoids the complicated polymerization process involved in the counterpart of polymer‐coating approaches.

A TEM image of PVA‐encapsulated carbon black.  相似文献   


6.
The storage moduli, shear moduli and surface morphologies of poly(vinyl alcohol) (PVA) and alumina hybrid hydrogels were investigated. The storage moduli of hybrid hydrogels with higher alumina contents were found to be 1.5 times higher than those of PVA gels. This increase in modulus might be attributed to the cohesion of alumina to the PVA network.

SEM photograph of Al7 PVA/alumina hybrid hydrogel. The photograph was taken with a magnification of × 220.  相似文献   


7.
PVA/SWNT dispersions yield aloe plant‐like crystals, where the leaves are single crystals templated by PVA coated SWNT. Longer growth times (≈18 months) lead to hexagonal rod‐like crystals. HR‐TEM images show evidence that PVA molecules are aligned parallel to the SWNT axis. WAXD, electron diffraction, and HR‐TEM observations of these aloe plant and hexagonal crystals suggests evidence for possible PVA‐SWNT epitaxy. Wide‐angle and electron diffraction data of these crystals also show that the structure seems to mimic the 2D hexagonal crystal packing of SWNT. PVA lattice images and moiré fringes were also observed in the leaf‐like crystals.

  相似文献   


8.
In this communication, β‐cyclodextrin modified quantum dots were used as a water‐soluble “supramolecular” cross‐linker (SCL) because of its surface's supramolecular activity. The guest monomer‐loaded SCL (mSCL) can be used to copolymerize with water‐soluble monomers leading to transparent hybrid supramolecular hydrogels. This simple and versatile method opens new venues for the preparation of hybrid supramolecular hydrogels and the host–guest chemistry of cyclodextrins.

  相似文献   


9.
Two kinds of representative polymers, poly(N‐isopropylacrylamide) (PNIPAAm) and β‐cyclodextrin (β‐CD) were selected and modified with azide and alkyne fucntional groups, respectively. When the solutions of these two modified polymers were mixed together, a cross‐linking reaction, a type of Huisgen's 1,3‐dipolar azide‐alkyne cycloaddition, occurred in the presence of Cu(I) catalyst. The strategy described here provides several advantages for the hydrogel formation including mild reaction conditions and controllable gelation rate. The resulted hydrogels were studied in terms of scanning electric microscopy (SEM), equilibrium swelling ratio and swelling/shrinking kinetics. The data obtained demonstrated the hydrogels had a porous structure as well as favorable thermosensitivity.

  相似文献   


10.
RAFT inverse miniemulsion polymerization is demonstrated for the first time as an alternate way to synthesize hydrophilic polymer latexes. The kinetic behavior of inverse RAFT miniemulsion polymerization of acrylamide is similar to that observed in aqueous RAFT solution polymerization. A water‐soluble initiator provides better control than a lipophilic initiator in inverse RAFT miniemulsion polymerization under the conditions used here.

  相似文献   


11.
We report a facile method to accomplish the crosslinking reaction of PVA with SWNTs, MWNTs, and C‐60 using MW irradiation. Nanocomposites of PVA crosslinked with SWNT, MWNT and C‐60 were prepared expeditiously by reacting the respective carbon nanotubes with 3 wt.‐% PVA under MW irradiation, maintaining a temperature of 100 °C, representing a radical improvement over literature methods to prepare such crosslinked PVA composites. This general preparative procedure is versatile and provides a simple route to manufacture useful SWNT, MWNT and C‐60 nanocomposites.

  相似文献   


12.
A close correllation between molecular‐level interactions and macroscopic characteristics of polymer networks exists. The characteristics of the polymeric hydrogels assembled from β‐cyclodextrin (β‐CD) and adamantyl (AD) substituted poly(acrylate)s can be tailored through selective host–guest complexation between β‐CD and AD substituents and their tethers. Dominantly, steric effects and competitive intra‐ and intermolecular host–guest complexation are found to control poly(acrylate) isomeric inter‐strand linkage in polymer network formation. This understanding of the factors involved in polymeric hydrogel formation points the way towards the construction of increasingly sophisticated biocompatible materials.

  相似文献   


13.
Summary: Poly(vinyl alcohol) (PVA) was derivatized by polymer analogous reaction with thienyl acryloyl chloride and processed to submicrometer fibers by electrospinning from aqueous solution. Water solubility of otherwise water‐soluble PVA fibers was reduced considerably by UV crosslinking of thienyl acrylate modified PVA fibers in the solid state. Water stability of these crosslinked fibers was proven by water steam test at 95 °C.

UV/Vis spectrum of PVA‐Thio fibers irradiated for different periods at 300 nm.  相似文献   


14.
The ability to form a gel through the physical or chemical crosslinking of chitosan has been well documented. In an attempt to mimic biological systems, thermal and pH‐sensitive chitosan cylindrical hydrogels were produced by a combination of physical and chemical crosslinking processes. To this end, chitosan hydrogels prepared from alkali chitin were molded in cylinders and, once washed, were further crosslinked with glutaraldehyde at stoichiometric ratios, R (= [? CH?O]/[? NH2]), of 1.61 and 3.22 × 10?2. Variation in swelling as a result of stepwise changes in temperature between 40 and 2 °C at pH values of 7.0, 7.6, and 8.0 revealed that the system responds in markedly different manners dependent upon the pH. At pH 7.0, cooling from 40 to 2 °C results in contraction of the gel network structure. While raising the temperature from 2 to 40 °C leads to a rapid swelling response (i.e., ca. a twofold increase in the amount of solvent uptake). Subsequent cooling to 2 °C is accompanied by a new contraction cycle. At pH ≥ 7.6 the temperature dependence of the swelling–contraction behavior is exactly the opposite of that observed at pH 7.0. Very similar trends were observed for the gels at both degrees of crosslinking. The swelling–shrinking behavior observed in gels of pH ≥ 7.6, is similar in kind to that of uncrosslinked gels and is interpreted in terms of a lower critical solution temperature (LCST) volume phase transition, driven by hydrophobic association, presumably involving residual acetyl groups in the chitin. The results at pH 7.0 suggest that the slight ionization of the ? NH groups leads to destruction of the hydrophobic hydration thus effectively reversing the negative thermal shrinking.

Evolution of the swelling ratio, S, as a function of time and temperature for crosslinked chitosan hydrogels. Circles represent S values recorded at pH 7.0 and triangles those at pH 7.6.  相似文献   


15.
PS grafted silica nanoparticles have been prepared by a tandem process that simultaneously employs RAFT polymerization and click chemistry. In a single pot procedure, azide‐modified silica, an alkyne functionalized RAFT agent and styrene are combined to produce the desired product. As deduced by thermal gravimetric and elemental analysis, the grafting density of PS on the silica in the tandem process is intermediate between analogous “grafting to” and “grafting from” techniques for preparing PS brushes on silica. Relative rates of RAFT polymerization and click reaction can be altered to control grafting density.

  相似文献   


16.
Summary: A series of high clay content Laponite XLS/polyacrylamide (PAAm) nanocomposite hydrogels (S‐M gels) with excellent resilience, low elastic hysteresis, and ultrahigh elongation, have been successfully synthesized. Based on our results, it is concluded that the mechanical properties of nanocomposite hydrogels probably depend to a great extent on the hydrophilicity and flexibility of the macromolecules. Moreover, it is found that the transparency during the in‐situ polymerization of S‐M gels does not change, which is quite different from clay/poly(N‐isopropylacrylamide) nanocomposite hydrogels.

Formation of nanocomposite hydrogels using Clay‐S by in‐situ polymerization.  相似文献   


17.
Summary: Thermosensitive polymer nanotubes can be fabricated within an aminopropylsilane‐modified porous anodic aluminum oxide membrane by surface‐initiated atom transfer radical polymerization (ATRP) followed by template removal. DSC experiments prove that the synthesized PNIPAM‐co‐MBAA copolymer nanotubes have a reversible thermosensitive behavior. The temperature‐induced changes in dimension and shape of the nanotubes were studied by AFM in real time in an aqueous environment. It indicates that the nanotubes undergo a shape alteration from an “ellipse” to “circular” shape in water upon heating to LCST or above.

DSC curves of PNIPAM‐co‐MBAA nanotubes.  相似文献   


18.
Sericin peptides and PVA are chemically modified with methacrylate groups to produce a covalent PVA/sericin hydrogel. Preservation of the sericin bioactivity following methacrylation is confirmed, and PVA/sericin hydrogels are fabricated for both B. mori and A. mylitta sericin. Cell adhesion studies confirm the preservation of sericin bioactivity post incorporation in PVA gels. PVA/A. mylitta gels are observed to facilitate cell adhesion to a significantly greater degree than PVA/B. mori gels. Overall, the incorporation of sericin does not alter the physical properties of the PVA hydrogels but does result in significantly improved cellular interaction, particularly from A. mylitta gels.

  相似文献   


19.
Here, we show that a poly(ethylene oxide) polymer can be physically cross‐linked with silicate nanoparticles (Laponite) to yield highly extensible, bio‐nanocomposite fibers that, upon pulling, stretch to extreme lengths and crystallize polymer chains. We find that both, nanometer structures and mechanical properties of the fibers respond to mechanical deformation by exhibiting strain‐induced crystallization and high elongation. We explore the structural characteristics using X‐ray scattering and the mechanical properties of the dried fibers made from hydrogels in order to determine feasibility for eventual biomedical use and to map out directions for further materials development.

  相似文献   


20.
A method to prepare shape‐changing nanospheres from liquid crystalline elastomers is reported. The nanosized colloids are prepared by a miniemulsion process. During this process, colloids are prepared from a liquid crystalline (LC) main‐chain polyester and subsequently crosslinked into a nanometer‐sized LC elastomer. The ability of these LC elastomers to change their shape at the phase transition temperature from the smectic A to the isotropic phase was detected by temperature‐dependent transmission electron microscopy. The phase transition‐induced shape change leads to strongly shape anisotropic nanosized elastomer particles.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号