共查询到20条相似文献,搜索用时 15 毫秒
1.
《Magnetic resonance in chemistry : MRC》2002,40(12):795-796
The 13C chemical shifts of the CP/MAS NMR for ferrocene derivatives have been measured. Copyright © 2002 John Wiley & Sons, Ltd. 相似文献
2.
《Magnetic resonance in chemistry : MRC》2003,41(11):944-948
Solid‐state NMR characterization of hybrid aluminosilicate xerogels, by 17O magic angle spinning (MAS) and triple quantum magic angle spinning (MQMAS) techniques, evidences Si—O—Si and Si—O—Al oxygen sites, spectrally separated in MQMAS experiments. Inversion of the MQMAS spectra allows the measurement of quadrupolar parameters, isotropic chemical shifts, distribution of chemical shift and discussion of the mobility of the structural units. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
3.
4.
De Novo 3D Structure Determination from Sub‐milligram Protein Samples by Solid‐State 100 kHz MAS NMR Spectroscopy 下载免费PDF全文
Dr. Vipin Agarwal Susanne Penzel Kathrin Szekely Riccardo Cadalbert Emilie Testori Andres Oss Jaan Past Prof. Ago Samoson Prof. Matthias Ernst Dr. Anja Böckmann Prof. Beat H. Meier 《Angewandte Chemie (International ed. in English)》2014,53(45):12253-12256
Solid‐state NMR spectroscopy is an emerging tool for structural studies of crystalline, membrane‐associated, sedimented, and fibrillar proteins. A major limitation for many studies is still the large amount of sample needed for the experiments, typically several isotopically labeled samples of 10–20 mg each. Here we show that a new NMR probe, pushing magic‐angle sample rotation to frequencies around 100 kHz, makes it possible to narrow the proton resonance lines sufficiently to provide the necessary sensitivity and spectral resolution for efficient and sensitive proton detection. Using restraints from such spectra, a well‐defined de novo structure of the model protein ubiquitin was obtained from two samples of roughly 500 μg protein each. This proof of principle opens new avenues for structural studies of proteins available in microgram, or tens of nanomoles, quantities that are, for example, typically achieved for eukaryotic membrane proteins by in‐cell or cell‐free expression. 相似文献
5.
Błażej Gierczyk Wojciech Ostrowski Marcin Kaźmierczak 《Magnetic resonance in chemistry : MRC》2012,50(4):271-277
2‐Aryl‐1,3,4‐selenadiazoles were studied by 1H, 13C, 15N and 77Se NMR spectroscopy. The results (chemical shifts and coupling constants) were correlated with Hammett substituent parameters as well as calculated chemical shifts and bond lengths. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
6.
13C cross-polarization magic angle spinning (CP/MAS) NMR data for 2,2,5,7,8-pentamethylchroman-6-ol (2), 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox c) (3) and its acetate (4), 2-methoxy-2,2,5,7,8-pentamethylchroman-6-ol (5), 2-hydroxy-2,2,5,7,8-pentamethylchroman-6-ol (6) and 2,2,5,7,8-pentamethylchroman (7) are reported. A deshielding of 7.7 ppm for the carboxylic carbon was observed in solid Trolox due to formation of intermolecular hydrogen bonds within cyclic dimers. Such crystal packing permits effective cross-polarization and fast relaxation (short T1rho(H)). The impact of the proton concentration on the CP dynamics is reflected by the longer T(CP) and T1rhoH for Trolox-d2 (deuterated at mobile proton sites). The calculated GIAO RHF shielding constants are sensitive to intramolecular effects: rotation around the C-6-O bond (changes of sigma up to 8 ppm) and conformation at C-2. 相似文献
7.
Siegel R Dupré N Quarton M Hirschinger J 《Magnetic resonance in chemistry : MRC》2004,42(12):1022-1026
51V magic angle spinning NMR was applied to the alpha(II), beta and gamma phases of VOPO4 at three magnetic field strengths (4.7, 7.1, and 11.7 T). The 51V quadrupole and chemical shift tensors were determined by iterative fitting of the NMR lineshapes at the three magnetic field strengths. The applicability of the method is illustrated by comparison with literature data. Although determined chemical shift tensors are completely axially symmetric and of the same magnitude, all studied phases can clearly be distinguished by their quadrupole coupling tensor. Relationships between the 51V NMR data and structural characteristics such as crystal symmetries are discussed. 相似文献
8.
Application of rapid sample rotation and radiofrequency irradiation in magic angle spinning (MAS) NMR of lipid bilayers can significantly increase the sample temperature. In this work, we studied the extent of heating during the acquisition of 1H-decoupled 13C MAS spectra of hydrated dimyristoylphosphatidylcholine (DMPC) in the L(alpha) phase. First, we describe a simple procedure for determining the increase in temperature by observing the shift of the 1H water signal. The method is then used to identify and assess the various factors that contribute to the sample heating. The important factors discussed in this paper include: (i) the spinning speed, (ii) the variable-temperature gas pressure, (iii) the rotor geometry, (iv) the power, duration and frequency of the radiofrequency irradiation and (v) the hydration level. A comparison of different heteronuclear decoupling schemes in terms of their ability to produce highly resolved 13C spectra of DMPC is also reported. 相似文献
9.
Some metal nitrides (TiN, ZrN, InN, GaN, Ca3N2, Mg3N2, and Ge3N4) have been studied by powder X‐ray diffraction (XRD) and 14N magic angle‐spinning (MAS) solid‐state NMR spectroscopy. For Ca3N2, Mg3N2, and Ge3N4, no 14N NMR signal was observed. Low speed (νr = 2 kHz for TiN, ZrN, and GaN; νr = 1 kHz for InN) and ‘high speed’ (νr = 15 kHz for TiN; νr = 5 kHz for ZrN; νr = 10 kHz for InN and GaN) MAS NMR experiments were performed. For TiN, ZrN, InN, and GaN, powder‐XRD was used to identify the phases present in each sample. The number of peaks observed for each sample in their 14N MAS solid‐state NMR spectrum matches perfectly well with the number of nitrogen‐containing phases identified by powder‐XRD. The 14N MAS solid‐state NMR spectra are symmetric and dominated by the quadrupolar interaction. The envelopes of the spinning sidebands manifold are Lorentzian, and it is concluded that there is a distribution of the quadrupolar coupling constants Qcc's arising from structural defects in the compounds studied. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
10.
《Magnetic resonance in chemistry : MRC》2003,41(9):689-692
15N NMR chemical shifts of 2‐aryl‐1,3,4‐oxadiazoles were assigned on the basis of the 1H–15N HMBC experiment. Chemical shifts of the nitrogen and carbon atoms in the oxadiazole ring correlate with the Hammett σ‐constants of substituents in the aryl ring (r2 ≥ 0.966 for N atoms). 15N NMR data are a suitable and sensitive means for characterizing long‐range electronic substituent effects. Additionally, 13C NMR data for these compounds are presented. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
11.
《Magnetic resonance in chemistry : MRC》2002,40(2):97-106
Solid‐state 1H → 19F and 19F → 1H cross‐polarization magic angle spinning (CP/MAS) NMR spectra have been investigated for a semicrystalline fluoropolymer, namely poly(vinylidene fluoride) (PVDF). The 1H → 19F CP/MAS spectra can be fitted by five Lorentzian functions, and the amorphous peaks were selectively observed by the DIVAM CP pulse sequences. Solid‐state spin‐lock experiments showed significant differences in T1ρF and T1ρH between the crystalline and amorphous domains, and the effective time constants, THF* and T1ρ*, which were estimated from the 1H → 19F CP curves, also clarify the difference in the strengths of dipolar interactions. Heteronuclear dipolar oscillation behaviour is observed in both standard CP and 1H → 19F inversion recovery CP (IRCP) experiments. The inverse 19F → 1H CP‐MAS and 1H → 19F CP‐drain MAS experiments gave complementary information to the standard 1H → 19F CP/MAS spectra in a manner reported in our previous papers for other fluoropolymers. The value of NF/NH (where N is a spin density) estimated from the CP‐drain curve is within experimental error equal to unity, which is consistent with the chemical structure. Copyright © 2001 John Wiley & Sons, Ltd. 相似文献
12.
Der‐Lii M. Tzou Lin‐Kai Ni Mei‐Man Chen Min‐Chuan Chiou Li‐Chou Chen Shan‐Te Hsu Kuo‐Lung Ku Chien‐Chung Cheng 《中国化学会会志》2013,60(9):1107-1112
Solid‐state Nuclear Magnetic Resonance (ss‐NMR) 13C single‐pulse excitation spectroscopy in combination with the magic‐angle spinning (MAS) technique was applied to a series of Phalaenopsis tissues, including the leaf, sheath, stem, and root, at different growth and spiking periods. Compared with{1H}/13C cross‐polarization MAS spectra, the 13C single‐pulse excitation MAS spectra displayed very distinct spectral patterns, recognizable as fingerprints of the tissues studied. 1Here, we demonstrate that solid‐state 13C single‐pulse excitation NMR spectroscopy provides a direct and robust analytical tool for studying the various tissues of Phalaenopsis in different growth and spiking induction periods. 相似文献
13.
Kristopher J. Harris Stanislav L. Veinberg Christopher R. Mireault Adonis Lupulescu Lucio Frydman Robert W. Schurko 《Chemistry (Weinheim an der Bergstrasse, Germany)》2013,19(48):16469-16475
Nitrogen is an element of utmost importance in chemistry, biology and materials science. Of its two NMR‐active isotopes, 14N and 15N, solid‐state NMR (SSNMR) experiments are rarely conducted upon the former, due to its low gyromagnetic ratio (γ) and broad powder patterns arising from first‐order quadrupolar interactions. In this work, we propose a methodology for the rapid acquisition of high quality 14N SSNMR spectra that is easy to implement, and can be used for a variety of nitrogen‐containing systems. We demonstrate that it is possible to dramatically enhance 14N NMR signals in spectra of stationary, polycrystalline samples (i.e., amino acids and active pharmaceutical ingredients) by means of broadband cross polarization (CP) from abundant nuclei (e.g., 1H). The BR oadband A diabatic IN version C ross‐ P olarization ( BRAIN–CP ) pulse sequence is combined with other elements for efficient acquisition of ultra‐wideline SSNMR spectra, including W ideband U niform‐ R ate S mooth‐ T runcation ( WURST ) pulses for broadband refocusing, C arr– P urcell M eiboom– G ill ( CPMG ) echo trains for T2‐driven S/N enhancement, and frequency‐stepped acquisitions. The feasibility of utilizing the BRAIN–CP/WURST–CPMG sequence is tested for 14N, with special consideration given to (i) spin‐locking integer spin nuclei and maintaining adiabatic polarization transfer, and (ii) the effects of broadband polarization transfer on the overlapping satellite transition patterns. The BRAIN–CP experiments are shown to provide increases in signal‐to‐noise ranging from four to ten times and reductions of experimental times from one to two orders of magnitude compared to analogous experiments where 14N nuclei are directly excited. Furthermore, patterns acquired with this method are generally more uniform than those acquired with direct excitation methods. We also discuss the proposed method and its potential for probing a variety of chemically distinct nitrogen environments. 相似文献
14.
15.
Back Cover: Ultrafast Magic‐Angle Spinning: Benefits for the Acquisition of Ultrawide‐Line NMR Spectra of Heavy Spin‐1/2 Nuclei (ChemPhysChem 6/2016) 下载免费PDF全文
Dr. Jean‐Philippe Demers Dr. Michal Malon Dr. Amit Pratap Singh Prof. Dr. Herbert W. Roesky Dr. Yusuke Nishiyama Prof. Dr. Adam Lange 《Chemphyschem》2016,17(6):923-923
16.
Takeuchi Y Nishikawa M Hachiya H Yamamoto H 《Magnetic resonance in chemistry : MRC》2005,43(8):662-664
High-resolution solid-state magic angle spinning (73)Ge NMR spectra of some organogermanium compounds were measured. Most tetrasubstituted germanes with identical substituents exhibited signals except for one case. Tetrasubstituted germanes with two kinds of different but somewhat similar substituents exhibited broad peaks. Trisubstituted germanes failed to show signals, indicating the importance of symmetry around germanium. 相似文献
17.
Compensating Pulse Imperfections in Solid‐State NMR Spectroscopy: A Key to Better Reproducibility and Performance 下载免费PDF全文
Johannes J. Wittmann Dr. Kazuyuki Takeda Prof. Dr. Beat H. Meier Prof. Dr. Matthias Ernst 《Angewandte Chemie (International ed. in English)》2015,54(43):12592-12596
The power and versatility of NMR spectroscopy is strongly related to the ability to manipulate NMR interactions by the application of radio‐frequency (rf) pulse sequences. Unfortunately, the rf fields seen by the spins differ from the ones programmed by the experimentalist. Pulse transients, i.e., deviations of the amplitude and phase of the rf fields from the desired values, can have a severe impact on the performance of pulse sequences and can lead to inconsistent results. Here, we demonstrate how transient‐compensated pulses can greatly improve the efficiency and reproducibility of NMR experiments. The implementation is based on a measurement of the characteristics of the resonance circuit and does not rely on an experimental optimization of the NMR signal. We show how the pulse sequence has to be modified to use it with transient‐compensated pulses. The efficiency and reproducibility of the transient‐compensated sequence is greatly superior to the original POST‐C7 sequence. 相似文献
18.
13C‐TmDOTA as versatile thermometer compound for solid‐state NMR of hydrated lipid bilayer membranes
Yuichi Umegawa Yuya Tanaka Matsumori Nobuaki Michio Murata 《Magnetic resonance in chemistry : MRC》2016,54(3):227-233
Recent advances in solid‐state nuclear magnetic resonance (NMR) techniques, such as magic angle spinning and high‐power decoupling, have dramatically increased the sensitivity and resolution of NMR. However, these NMR techniques generate extra heat, causing a temperature difference between the sample in the rotor and the variable temperature gas. This extra heating is a particularly crucial problem for hydrated lipid membrane samples. Thus, to develop an NMR thermometer that is suitable for hydrated lipid samples, thulium‐1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetate (TmDOTA) was synthesized and labeled with 13C (i.e., 13C‐TmDOTA) to increase the NMR sensitivity. The complex was mixed with a hydrated lipid membrane, and the system was subjected to solid‐state NMR and differential scanning calorimetric analyses. The physical properties of the lipid bilayer and the quality of the NMR spectra of the membrane were negligibly affected by the presence of 13C‐TmDOTA, and the 13C chemical shift of the complex exhibited a large‐temperature dependence. The results demonstrated that 13C‐TmDOTA could be successfully used as a thermometer to accurately monitor temperature changes induced by 1H decoupling pulses and/or by magic angle spinning and the temperature distribution of the sample inside the rotor. Thus, 13C‐TmDOTA was shown to be a versatile thermometer for hydrated lipid assemblies. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
19.
Atsushi Asano Masaru Eguchi Takuzo Kurotu 《Journal of Polymer Science.Polymer Physics》1999,37(16):2007-2012
Thermal dehydration process of PMAA was investigated by solid‐state 13C NMR. For heat‐treated PMAA at 150°C, at which the dehydration goes very slowly, we observed three 13C peaks at 172, 178, and 187 ppm in the carboxyl group region. The peak at 172 ppm is due to the intramolecular cyclic anhydrides by comparing the reported value of 13C chemical shift. The peaks at 178 and 187 ppm were assigned to regularly aligned free carboxylic acids and intermolecular acid dimers, respectively, from the 2D‐exchange 13C NMR spectra, 13C chemical shift values and IR spectra. We concluded that by heat‐treatment the rearrangement of intermolecular hydrogen bonding of the carboxylic acids in PMAA occurs firstly to form the regularly aligned acid dimers, and the dimers dissociated to be the regularly aligned free carboxylic acids at high temperatures. The adjacent free carboxyl acids dehydrate with each other, resulting in the formation of intramolecular anhydrides. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2007–2012, 1999 相似文献
20.
Donghua H. Zhou Dr. Gautam Shah Charles Mullen Dennis Sandoz Chad M. Rienstra Prof. Dr. 《Angewandte Chemie (International ed. in English)》2009,48(7):1253-1256
The natural way : A sensitive NMR spectroscopic method is developed to obtain well‐resolved two‐dimensional spectra (15N–1H and 13C–1H) for natural‐abundance (that is, without the need for isotopic enrichment) large‐molecule samples, such as biopharmaceuticals. This method gives structural insights on two lyophilized aprotinin samples and three insulin samples in lyophilized, microcrystalline suspension formulation (red; see picture) and fibril (green) forms.