首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An Erratum has been published for this article in Journal of Graph Theory 48: 329–330, 2005 . Let M be a set of positive integers. The distance graph generated by M, denoted by G(Z, M), has the set Z of all integers as the vertex set, and edges ij whenever |i?j| ∈ M. We investigate the fractional chromatic number and the circular chromatic number for distance graphs, and discuss their close connections with some number theory problems. In particular, we determine the fractional chromatic number and the circular chromatic number for all distance graphs G(Z, M) with clique size at least |M|, except for one case of such graphs. For the exceptional case, a lower bound for the fractional chromatic number and an upper bound for the circular chromatic number are presented; these bounds are sharp enough to determine the chromatic number for such graphs. Our results confirm a conjecture of Rabinowitz and Proulx 22 on the density of integral sets with missing differences, and generalize some known results on the circular chromatic number of distance graphs and the parameter involved in the Wills' conjecture 26 (also known as the “lonely runner conjecture” 1 ). © 2004 Wiley Periodicals, Inc. J Graph Theory 47: 129–146, 2004  相似文献   

2.
We introduce in this paper the notion of the chromatic number of an oriented graph G (that is of an antisymmetric directed graph) defined as the minimum order of an oriented graph H such that G admits a homomorphism to H. We study the chromatic number of oriented k-trees and of oriented graphs with bounded degree. We show that there exist oriented k-trees with chromatic number at least 2k+1 - 1 and that every oriented k-tree has chromatic number at most (k + 1) × 2k. For 2-trees and 3-trees we decrease these upper bounds respectively to 7 and 16 and show that these new bounds are tight. As a particular case, we obtain that oriented outerplanar graphs have chromatic number at most 7 and that this bound is tight too. We then show that every oriented graph with maximum degree k has chromatic number at most (2k - 1) × 22k-2. For oriented graphs with maximum degree 2 we decrease this bound to 5 and show that this new bound is tight. For oriented graphs with maximum degree 3 we decrease this bound to 16 and conjecture that there exists no such connected graph with chromatic number greater than 7. © 1997 John Wiley & Sons, Inc. J Graph Theory 25: 191–205, 1997  相似文献   

3.
There are numerous means for measuring the closeness to planarity of a graph such as crossing number, splitting number, and a variety of thickness parameters. We focus on the classical concept of the thickness of a graph, and we add to earlier work in [4]. In particular, we offer new 9-critical thickness-two graphs on 17, 25, and 33 vertices, all of which provide counterexamples to a conjecture on independence ratio of Albertson; we investigate three classes of graphs, namely singly and doubly outerplanar graphs, and cloned planar graphs. We give a sharp upper bound for the largest chromatic number of the cloned planar graphs, and we give upper and lower bounds for the largest chromatic number of the former two classes.  相似文献   

4.
The clique number of an undirected graph G is the maximum order of a complete subgraph of G and is a well‐known lower bound for the chromatic number of G. Every proper k‐coloring of G may be viewed as a homomorphism (an edge‐preserving vertex mapping) of G to the complete graph of order k. By considering homomorphisms of oriented graphs (digraphs without cycles of length at most 2), we get a natural notion of (oriented) colorings and oriented chromatic number of oriented graphs. An oriented clique is then an oriented graph whose number of vertices and oriented chromatic number coincide. However, the structure of oriented cliques is much less understood than in the undirected case. In this article, we study the structure of outerplanar and planar oriented cliques. We first provide a list of 11 graphs and prove that an outerplanar graph can be oriented as an oriented clique if and only if it contains one of these graphs as a spanning subgraph. Klostermeyer and MacGillivray conjectured that the order of a planar oriented clique is at most 15, which was later proved by Sen. We show that any planar oriented clique on 15 vertices must contain a particular oriented graph as a spanning subgraph, thus reproving the above conjecture. We also provide tight upper bounds for the order of planar oriented cliques of girth k for all .  相似文献   

5.
Cographs form the minimal family of graphs containing K1 that is closed with respect to complementation and disjoint union. We discuss vertex partitions of graphs into the smallest number of cographs. We introduce a new parameter, calling the minimum order of such a partition the c-chromatic number of the graph. We begin by axiomatizing several well-known graphical parameters as motivation for this function. We present several bounds on c-chromatic number in terms of well-known expressions. We show that if a graph is triangle-free, then its chromatic number is bounded between the c-chromatic number and twice this number. We show that both bounds are sharp for graphs with arbitrarily high girth. This provides an alternative proof to a result by Broere and Mynhardt; namely, there exist triangle-free graphs with arbitrarily large c-chromatic numbers. We show that any planar graph with girth at least 11 has a c-chromatic number at most two. We close with several remarks on computational complexity. In particular, we show that computing the c-chromatic number is NP-complete for planar graphs.  相似文献   

6.
We show new lower and upper bounds on the maximum number of maximal induced bipartite subgraphs of graphs with n vertices. We present an infinite family of graphs having 105n/10 ≈ 1.5926n; such subgraphs show an upper bound of O(12n/4) = O(1.8613n) and give an algorithm that finds all maximal induced bipartite subgraphs in time within a polynomial factor of this bound. This algorithm is used in the construction of algorithms for checking k‐colorability of a graph. © 2004 Wiley Periodicals, Inc. J Graph Theory 48: 127–132, 2005  相似文献   

7.
This paper presents algorithms to find vertex-critical and edge-critical subgraphs in a given graph G, and demonstrates how these critical subgraphs can be used to determine the chromatic number of G. Computational experiments are reported on random and DIMACS benchmark graphs to compare the proposed algorithms, as well as to find lower bounds on the chromatic number of these graphs. We improve the best known lower bound for some of these graphs, and we are even able to determine the chromatic number of some graphs for which only bounds were known.  相似文献   

8.
We consider the binding numbers of Kr-free graphs, and improve the upper bounds on the binding number which force a graph to contain a clique of order r. For the case r=4, we provide a construction for K4-free graphs which have a larger binding number than the previously known constructions. This leads to a counterexample to a conjecture by Caro regarding the neighborhoods of independent sets.  相似文献   

9.
An acyclic coloring of a graph G is a proper coloring of the vertex set of G such that G contains no bichromatic cycles. The acyclic chromatic number of a graph G is the minimum number k such that G has an acyclic coloring with k colors. In this paper, acyclic colorings of Hamming graphs, products of complete graphs, are considered. Upper and lower bounds on the acyclic chromatic number of Hamming graphs are given. Gretchen L. Matthews: The work of this author is supported by NSA H-98230-06-1-0008.  相似文献   

10.
A face of an edge‐colored plane graph is called rainbow if the number of colors used on its edges is equal to its size. The maximum number of colors used in an edge coloring of a connected plane graph Gwith no rainbow face is called the edge‐rainbowness of G. In this paper we prove that the edge‐rainbowness of Gequals the maximum number of edges of a connected bridge face factor H of G, where a bridge face factor H of a plane graph Gis a spanning subgraph H of Gin which every face is incident with a bridge and the interior of any one face fF(G) is a subset of the interior of some face f′∈F(H). We also show upper and lower bounds on the edge‐rainbowness of graphs based on edge connectivity, girth of the dual graphs, and other basic graph invariants. Moreover, we present infinite classes of graphs where these equalities are attained. © 2009 Wiley Periodicals, Inc. J Graph Theory 62: 84–99, 2009  相似文献   

11.
In this paper we discuss the existence of lower bounds for the chromatic number of graphs in terms of the average degree or the coloring number of graphs. We obtain a lower bound for the chromatic number of K1,t-free graphs in terms of the maximum degree and show that the bound is tight. For any tree T, we obtain a lower bound for the chromatic number of any K2,t-free and T-free graph in terms of its average degree. This answers affirmatively a modified version of Problem 4.3 in [T.R. Jensen, B. Toft, Graph Coloring Problems, Wiley, New York, 1995]. More generally, we discuss δ-bounded families of graphs and then we obtain a necessary and sufficient condition for a family of graphs to be a δ-bounded family in terms of its induced bipartite Turán number. Our last bound is in terms of forbidden induced even cycles in graphs; it extends a result in [S.E. Markossian, G.S. Gasparian, B.A. Reed, β-perfect graphs, J. Combin. Theory Ser. B 67 (1996) 1–11].  相似文献   

12.
In this paper we obtain some upper bounds for the b-chromatic number of K1,s-free graphs, graphs with given minimum clique partition and bipartite graphs. These bounds are given in terms of either the clique number or the chromatic number of a graph or the biclique number for a bipartite graph. We show that all the bounds are tight.  相似文献   

13.
An edge‐coloring of a graph G is equitable if, for each vV(G), the number of edges colored with any one color incident with v differs from the number of edges colored with any other color incident with v by at most one. A new sufficient condition for equitable edge‐colorings of simple graphs is obtained. This result covers the previous results, which are due to Hilton and de Werra, verifies a conjecture made by Hilton recently, and substantially extends it to a more general class of graphs. © 2010 Wiley Periodicals, Inc. J Graph Theory 66:175‐197, 2011  相似文献   

14.
In this paper, we prove some relaxations of Hedetniemi’s conjecture in terms of altermatic number and strong altermatic number of graphs, two combinatorial parameters introduced by the present authors Alishahi and Hajiabolhassan (2015) providing two sharp lower bounds for the chromatic number of graphs. In terms of these parameters, we also introduce some sharp lower bounds for the chromatic number of the categorical product of two graphs. Using these lower bounds, we present some new families of graphs supporting Hedetniemi’s conjecture.  相似文献   

15.
A proper edge coloring c:E(G)→Z of a finite simple graph G is an interval coloring if the colors used at each vertex form a consecutive interval of integers. Many graphs do not have interval colorings, and the deficiency of a graph is an invariant that measures how close a graph comes to having an interval coloring. In this paper we search for tight upper bounds on the deficiencies of k-regular graphs in terms of the number of vertices. We find exact values for 1?k?4 and bounds for larger k.  相似文献   

16.
邻点可区别全染色猜想得到了国内外许多学者的关注和研究.迄今为止,这个猜想没有得到证明,也没有关于这个猜想的反例.叉连图对邻点可区别全染色猜想成立给予了证明,并给出了精确值.同时,证明了:存在无穷多个图,它们中的每一个图H至少包含一个真子图HH~1,使得x_as~″(H~1)x_as~″(H).  相似文献   

17.
We give new bounds on the star arboricity and the caterpillar arboricity of planar graphs with given girth. One of them answers an open problem of Gyárfás and West: there exist planar graphs with track number 4. We also provide new NP-complete problems.  相似文献   

18.
A graph is f-choosable if for every collection of lists with list sizes specified by f there is a proper coloring using colors from the lists. We characterize f-choosable functions for block graphs (graphs in which each block is a clique, including trees and line graphs of trees). The sum choice number is the minimum over all choosable functions f of the sum of the sizes in f. The sum choice number of any graph is at most the number of vertices plus the number of edges. We show that this bound is tight for block graphs.Acknowledgments. Partially supported by a grant from the Reidler Foundation. The author would like to thank an anonymous referee for useful comments.  相似文献   

19.
Most upper bounds for the chromatic index of a graph come from algorithms that produce edge colorings. One such algorithm was invented by Vizing [Diskret Analiz 3 (1964), 25–30] in 1964. Vizing's algorithm colors the edges of a graph one at a time and never uses more than Δ+µ colors, where Δ is the maximum degree and µ is the maximum multiplicity, respectively. In general, though, this upper bound of Δ+µ is rather generous. In this paper, we define a new parameter fan(G) in terms of the degrees and the multiplicities of G. We call fan(G) the fan number of G. First we show that the fan number can be computed by a polynomial‐time algorithm. Then we prove that the parameter Fan(G)=max{Δ(G), fan(G)} is an upper bound for the chromatic index that can be realized by Vizing's coloring algorithm. Many of the known upper bounds for the chromatic index are also upper bounds for the fan number. Furthermore, we discuss the following question. What is the best (efficiently realizable) upper bound for the chromatic index in terms of Δ and µ ? Goldberg's Conjecture supports the conjecture that χ′+1 is the best efficiently realizable upper bound for χ′ at all provided that P ≠ NP . © 2009 Wiley Periodicals, Inc. J Graph Theory 65: 115–138, 2010  相似文献   

20.
The Grundy number of a graph G is the largest k such that G has a greedy k‐coloring, that is, a coloring with k colors obtained by applying the greedy algorithm according to some ordering of the vertices of G. In this article, we give new bounds on the Grundy number of the product of two graphs. © 2011 Wiley Periodicals, Inc. J Graph Theory 71:78–88, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号