首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction of aryl ketones with sodium azide using polymer‐supported bis(trifluoroacetoxyiodo)‐benzene (PSBTI) in the presence of trifluoroacetic acid (TFA) to prepare α‐azidoketones in one‐pot conditions is reported.  相似文献   

2.
Treatment of lithio derivativ e of novel PEG-supported a-phenylselenopropionate with aldehydes, followed by oxidation-elimination with 30% hydrogen peroxide, formed Baylis-Hillman products, which were then reacted with sodium arylsulfinate. The resulting sulfonylated products were cleaved from the PEG efficiently affording methyl (2Z)-2-arylsulfonylmethyl-2-alkenoates in good yields and high purities.  相似文献   

3.
The palladium complex of MgO‐supported melamine‐formaldehyde polymer catalyst was prepared and characterized by X‐ray diffraction (XRD) and X‐ray photoelectron spectroscopy (XPS). The preparation of Nn‐octyl‐D ‐glucamine was investigated by using this complex as the catalyst. It was found that the palladium complex of MgO‐supported melamine‐formaldehyde polymer has a good catalytic activity for the hydrogenation of n‐octylamine with D ‐glucose to produce Nn‐octyl‐D ‐glucamine. The effects of additive, solvent, temperature, hydrogen pressure, Pd content in the catalyst and the amount of catalyst on the preparation of Nn‐octyl‐D ‐glucamine have all been studied. Under the optimum experimental conditions—D ‐glucose, 37.2 mmol; n‐octylamine, 31 mmol; triethylamine, 1.0 ml; ethanol, 60 ml; temperature, 333 K; hydrogen pressure, 1.5 MPa; the amount of the catalyst (Pd content 3.55%, N/Pd molar ratio 12), 0.7 g—the highest yield of Nn‐octyl‐D ‐glucamine (57.6%) was obtained. XRD results show that melamine‐formaldehyde polymer changed the structure of MgO, and XPS results suggest that coordination bonds were formed between the hexatomic ring and metal atom, and palladium particles were immobilized on the polymer. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
The presence of cis‐vinylene bonds in Gilch‐polymerized poly[2‐methoxy‐5‐(2′‐ethyl‐hexyloxy)‐1,4‐phenylene vinylene] is reported. Through fractionation, species with a weight‐average molecular weight of less than 37,000 exhibited an abnormal blueshift of photoluminescence spectra in toluene solutions, and this was attributed to the presence of cis‐vinylene bonds, as verified by NMR spectroscopy. Surprisingly, the fractionated species (~1 wt %) with a weight‐average molecular weight of 5000 were mostly linked by the cis‐vinylene bonds. The concentration decreased with the molecular weight until a molecular weight of 37,000 was reached; at that point, the polymer chains contained mainly trans‐vinylene bonds. Obviously, the formation of cis‐vinylene bonds strongly inhibited the growth of polymer chains during Gilch polymerization. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2520–2526, 2005  相似文献   

5.
Treatment of the polymer‐supported α‐phenylseleno ketones and esters prepared from polymer‐supported selenium bromide with ketone and ester enolates with hydrogen peroxide afford α,β‐unsaturated ketones and esters in good yields and high purities.  相似文献   

6.
The postmodification of poly[9‐(2‐hexyldecyl)‐9H‐carbazole‐2,7‐diyl] ( P1 ) upon its reaction with N‐bromosuccinimide affords exclusive and full bromination of the 3,6‐positions of the carbazole repeat units to yield poly[3,6‐dibromo‐9‐(2‐hexyldecyl)‐9H‐carbazole‐2,7‐diyl] ( P2 ). Brominated polymer P2 can be used as a precursor for further functionalization at the 3,6‐positions with the desired functional group to afford other useful polymers. Polymer P2 has hence been reacted with copper(I) cyanide to afford poly[3,6‐dicyano‐9‐(2‐hexyldecyl)‐9H‐carbazole‐2,7‐diyl] ( P3 ). Full substitution of the bromide groups with nitrile‐functional groups has been achieved. The preparation and structural characterization of polymers P2 and P3 are presented together with studies on their electronic conjugation and photoluminescence properties. Cyclic voltammetry studies on polymer P3 indicate that the new polymer is easier to reduce (n‐dope) but more difficult to oxidize than its unsubstituted counterpart ( P1 ) as a result of the introduction of the electron‐withdrawing nitrile‐functional groups at the 3,6‐positions on the carbazole repeat units on the polymer chains. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3336–3342, 2006  相似文献   

7.
For the purpose of developing poly(3‐hexylthiophene) (P3HT) based copolymers with deep‐lying highest occupied molecular orbital (HOMO) levels for polymer solar cells with high open‐circuit voltage (Voc), we report a combined approach of random incorporation of 3‐cyanothiophene (CNT) and 3‐(2‐ethylhexyl)thiophene (EHT) units into the P3HT backbone. This strategy is designed to overcome CNT content limitations in recently reported P3HT‐CNT copolymers, where incorporation of more than 15% of CNT into the polymer backbone leads to impaired polymer solubility and raises the HOMO level. This new approach allows incorporation of a larger CNT content, reaching even lower‐lying HOMO levels. Importantly, a very low HOMO level of ?5.78 eV was obtained, representing one of the lowest HOMO values for exclusively thiophene‐based polymers. Lower HOMO levels result in higher Voc and higher power conversion efficiencies (PCE) compared to the previously reported P3HT‐CNT copolymers containing only 3‐hexylthiophene and CNT units. As a result, solar cells based on P3HT‐CNT‐EHT(15:15) , which contains 70% of P3HT, 15% of CNT and 15% of EHT, yield a Voc of 0.83 V in blends with PC61BM while preserving high fill factor (FF) and high short‐circuit current density (Jsc), resulting in 3.6% PCE. Additionally, we explored the effect of polymer number‐average molecular weight (Mn) on the optoelectronic properties and solar cell performance for the example of P3HT‐CNT‐EHT(15:15). The organic photovoltaic (OPV) performance improves with polymer Mn increasing from 3.4 to 6.7 to 9.6 kDa and then it declines as Mn further increases to 9.9 and to 16.2 kDa. The molecular weight study highlights the importance of not only the solar cell optimization, but also the significance of individual polymer properties optimization, in order to fully explore the potential of any given polymer in OPVs. The broader ramification of this study lies in potential application of these high band gap copolymers with low‐lying HOMO level in the development of ternary blend photovoltaics as well as tandem OPV. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1526–1536  相似文献   

8.
Thermal treatments under vacuum of conventional supported Ziegler‐Natta precatalysts (MgCl2/TiCl4/Dibutylphthalate) were conducted to gradually remove titanium to modify the active sites distribution. Only limited detitanations of precatalysts were achieved paying attention not to chemically alter the internal donor (T < 150 °C). Used in combination with the required cocatalyst and external donor in the propylene slurry polymerization, the modified precatalysts exhibited a drop of activity versus decreasing titanium content but the distributed polymer properties are almost not affected (a slight narrowing of molecular weight distribution was observed). After a titanium chloride secondary impregnation (possibly done in presence of an additional Lewis base), activity resumed but polymer properties are once again unchanged. These findings highlight the difficulty to separate the different families of active sites and lead us to propose a cluster organization of titanium active sites. Active sites are composed of titanium clusters having a size distribution at the precatalyst surface, possessing a critical operating size and operating collectively in polymerization. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5461–5470, 2008  相似文献   

9.
New poly(phenylene vinylene) derivatives with a 5‐diphenylamino‐1,3‐phenylene linkage (including polymers 2 , 3 , and 5 ) have been synthesized to improve the charge‐injection properties. These polymers are highly photoluminescent with fluorescent quantum yields as high as 76% in tetrahydrofuran solutions. With effective π‐conjugation interruption at adjacent m‐phenylene units, chromophores of different conjugation lengths can be incorporated into the polymer chain in a controllable manner. In polymer 2 , the structural regularity leads to an isolated, well‐defined emitting chromophore. Isomeric polymer 3 of a random chain sequence, however, allows the effective emitting chromophores to be joined in sequence by sharing a common m‐phenylene linkage (as shown in a molecular fragment). Double‐layer light‐emitting‐diode devices using 2 , 3 , and 5 as emitting layers have turn‐on voltages of about 3.5 V and produce blue‐green emissions with peaks at 493, 492, and 482 nm and external quantum efficiencies up to 1.42, 0.98, and 1.53%, respectively. In comparison with a light‐emitting diode using 2 , a device using 3 shows improved charge injection and displays increased brightness by a factor of ~3 to 1400 cd/m2 at an 8‐V bias. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2307–2315, 2006  相似文献   

10.
(E)‐1,3‐Pentadiene (EP) and (E)‐2‐methyl‐1,3‐pentadiene (2MP) were polymerized to cis‐1,4 polymers with homogeneous and heterogeneous neodymium catalysts to examine the influence of the physical state of the catalyst on the polymerization stereoselectivity. Data on the polymerization of (E)‐1,3‐hexadiene (EH) are also reported. EP and EH gave cis‐1,4 isotactic polymers both with the homogeneous and with the heterogeneous system, whereas 2MP gave an isotactic cis‐1,4 polymer with the heterogeneous catalyst and a syndiotactic cis‐1,4 polymer, never reported earlier, with the homogeneous one. For comparison, the results obtained with the soluble CpTiCl3‐based catalyst (Cp = cyclopentadienyl), which gives cis‐1,4 isotactic poly(2MP), are examined. A tentative interpretation is given for the mechanism of the formation of the stereoregular polymers obtained and a complete NMR characterization of the cis‐1,4‐syndiotactic poly(2MP) is reported. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3227–3232  相似文献   

11.
In the coordination polymer catena‐poly[[[diaqua[5‐carboxy‐2‐(pyridin‐3‐yl)‐1H‐imidazole‐4‐carboxylato‐κ2N3,O4]lead(II)]‐μ‐5‐carboxy‐2‐(pyridin‐3‐yl)‐1H‐imidazole‐4‐carboxylato‐κ3N3,O4:N2] dihydrate], {[Pb(C10H6N3O4)(H2O)2]·2H2O}n, the two 5‐carboxy‐2‐(pyridin‐3‐yl)‐1H‐imidazole‐4‐carboxylate ligands have different coordination modes, one being terminal and the other bridging. The bridging ligand links PbII cations into one‐dimensional coordination polymer chains. The structure is also stabilized by intra‐ and interchain π–π stacking interactions between the pyridine rings, resulting in the formation of a two‐dimensional network. Extensive hydrogen‐bonding interactions lead to the formation of a three‐dimensional supramolecular network.  相似文献   

12.
A simple and eco‐friendly method for the preparation of 1,5‐diaryl‐3‐(arylamino)‐1H‐pyrrol‐2(5H)‐ones via the cyclo‐condensation reaction of aldehydes, amines and ethyl pyruvate in the presence of silica supported ferric chloride (SiO2‐FeCl3) as reusable heterogeneous catalyst is described. The present methodology offers several advantages such as excellent yields, simple procedure and short reaction times.  相似文献   

13.
The synthesis and polymerization of (E)‐p‐[(p‐methoxyphenyl)‐2‐ethenyl]phenylacetylene was carried out with a homogeneous vanadium acetylacetonate/aluminum triethyl catalyst system, a bis(rhodium chloride cycloocta‐1,5‐diene) complex, and a palladium/trimethylsilyl complex. In all cases, the main fraction was a polymer with a stereoregular structure. The polymerization with the vanadium catalyst gave a polymer fraction in a low yield. The polymerization of (E)‐p‐[(p‐methoxyphenyl)‐2‐ethenyl]phenylacetylene with the soluble rhodium complex gave a polymer in a high yield. The soluble palladium/chlorotrimethylsilane complex gave a polymer in a good yield. On the basis of the spectroscopic data, the poly{(E)‐p‐[(p‐methoxyphenyl)‐2‐ethenyl]phenylacetylene)} obtained, in all cases, showed a cis–transoidal stereoregular structure. The molecular mass of poly{(E)‐p‐[(p‐methoxyphenyl)‐2‐ethenyl]phenylacetylene)} was determined by the matrix‐assisted laser desorption/ionization time‐of‐flight technique. The kinetics of the reaction were analyzed. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6438–6444, 2005  相似文献   

14.
Preparation of perchloric acid supported on alumina and its primary application as a solid supported heterogeneous catalyst to the synthesis of α-(α-amidobenzyl)-β-naphthols by a one-pot, three-component condensation of benzaldehydes, β-naphthol and acetamide or benzamide under thermal solvent-free conditions were described. The present methodology offers several advantages such as simple procedure, shorter reaction time, and excellent yields.  相似文献   

15.
Polymer‐supported 4‐aminofonnoyldiphenylammonium triflate (PS‐AFDPAT) is an efficient catalyst for the esterification between equimolar amounts of carboxylic acids and alcohols under mild conditions, which can be recycled without loss of activity.  相似文献   

16.
Hydroxypropyl‐β‐cyclodextrin (HP‐β‐CD) is a modified β‐cyclodextrin (β‐CD) derivative, which is toxicologically harmless to mammals and other animals. HP‐β‐CD is electrospun from an aqueous solution by blending with a non‐toxic, biocompatible, synthetic polymer poly(ethylene oxide) (PEO). Aqueous solutions containing different HP‐β‐CD/PEO blends (50:50–80:20) with variable concentrations (4 wt%–12 wt%) were used. Scanning electron microscope was used to investigate the morphology of the fibers, and Fourier transform infrared spectroscopy analysis confirmed the presence of HP‐β‐CD in the fiber. Uniform nanofibers with an average diameter of 264, 244, and 236 nm were obtained from 8 wt% solution of 50:50, 60:40, and 70:30 HP‐β‐CD/PEO, respectively. The average diameter of the fiber was decreased with increasing of HP‐β‐CD/PEO ratio. However, a higher proportion of HP‐β‐CD in the spinning solution increased beads in the fibers. The polymer concentration had no significant effect on the fiber diameter. The most uniform fibers with the narrowest diameter distribution were obtained from the 8 wt% of 50:50 solution. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
A series of novel 3‐((4‐(t‐butyl)‐2‐(2‐benzylidenehydrazinyl)thiazol‐5‐yl)methyl)quinolin‐2(1H)‐ones ( 7a – 7z ) were designed, synthesized and evaluated for their ability of inhibiting neuraminidase (NA) of in?uenza H1N1 virus. Some compounds displayed moderate influenza NA inhibitory activity. Compound 7l with the scaffold of 2‐(2‐(2‐methoxybenzylidene)hydrazinyl)thiazole was the best one, exhibiting moderate NA inhibitory activity with IC50 of 44.66 µmol/L. Structure‐activity relationship showed that compounds with methoxy or hydroxy groups at the ortho position, fluorine and nitro groups at the meta position and chlorine and bromine groups at the para position of phenyl ring were more active. Docking study indicated that compound 7l has important interactions with some key residues (including Asp151, Glu119, Arg292, Tyr406, and Asn347) and binds to 430‐cavity adjacent to NA active site.  相似文献   

18.
Nanomagnetic‐supported sulfonic acid is found to be a powerful and reusable heterogeneous catalyst for the rapid synthesis of α,α′‐bis‐(substituted‐benzylidene)cycloalkanones under conventional heating and solvent free conditions. High yield, simple work up and easy recovery of the catalyst are the most obvious advantages of this procedure.  相似文献   

19.
A new mercury(II) complex of 1,2‐bis(4‐pyridyle)ethene (bpe) with anionic acetate and thiocyanate ligands has been synthesized and characterized by elemental analysis, IR, 1H NMR and 13C NMR spectroscopy. The single crystal X‐ray analysis shows that the complex is a two‐dimensional polymer with simultaneously bridging 1,2‐bis(4‐pyridyle)ethane, acetate and thiocyanate ligands and basic repeating dimeric [Hg2(μ‐bpe)(μ‐OAc)2(μ‐SCN)2] units. The two‐dimensional system forms a three‐dimensional network by packing via ππ stacking interactions.  相似文献   

20.
A novel series of well‐defined alternating poly[2,7‐(9,9‐dihexylfluorenyl)‐alt‐pyridinyl] (PDHFP) with donor‐acceptor repeat units were synthesized using palladium (0)‐catalyzed Suzuki cross‐coupling reactions in good to high yields. In this series of alternating polymers, 2, 7‐(9,9‐dihexylfluorenyl) was used as the light emitting unit, and the electron deficient pyridinyl unit was employed to provide improved electron transportation. These polymers were characterized by 1H‐NMR and 13C‐NMR, gel permeation chromatography (GPC), thermal analyses, and UV‐vis and fluorescence spectroscopy. The glass transition temperature of copolymers in nitrogen ranged from 110 to 148 °C, and the copolymers showed high thermal stabilities with high decomposition temperatures in the range of 350 to 390 °C in air. The difference in linkage position of pyridinyl unit in the polymer backbone has significant effects on the electronic and optical properties of polymers in solution and in film phases. Meta‐linkage (3,5‐ and 2,6‐linkage) of pyridinyl units in the polymer backbone is more favorable to polymer for pure blue emission and prevention of aggregation of polymer chain than para‐linkage (2,5‐linkage) of the pyridinyl units. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4792–4801, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号