首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction kinetics of chlorine atoms with a series of partially fluorinated straight-chain alcohols, CF(3)CH(2)CH(2)OH (1), CF(3)CF(2)CH(2)OH (2), CHF(2)CF(2)CH(2)OH (3), and CF(3)CHFCF(2)CH(2)OH (4), were studied in the gas phase over the temperature range of 273-363 K by using very low-pressure reactor mass spectrometry. The absolute rate coefficients were given by the expressions (in cm(3) molecule(-1) s(-1)): k(1) = (4.42 +/- 0.48) x 10(-11) exp(-255 +/- 20/T); k(1)(303) = (1.90 +/- 0.17) x 10(-11), k(2) = (2.23 +/- 0.31) x 10(-11) exp(-1065 +/- 106/ T); k(2)(303) = (6.78 +/- 0.63) x 10(-13), k(3) = (8.51 +/- 0.62) x 10(-12) exp(-681 +/- 72/T); k(3)(303) = (9.00 +/- 0.82) x 10(-13) and k(4) = (6.18 +/- 0.84) x 10(-12) exp(-736 +/- 42/T); k(4)(303) = (5.36 +/- 0.51) x 10(-13). The quoted 2sigma uncertainties include the systematic errors. All title reactions proceed via a hydrogen atom metathesis mechanism leading to HCl. Moreover, the oxidation of the primarily produced radicals was investigated, and the end products were the corresponding aldehydes (R(F)-CHO; R(F) = -CH(2)CF(3), -CF(2)CF(3), -CF(2)CHF(2), and -CF(2)CHFCF(3)), providing a strong experimental indication that the primary reactions proceed mainly via the abstraction of a methylenic hydrogen adjacent to a hydroxyl group. Finally, the bond strengths and ionization potentials for the title compounds were determined by density functional theory calculations, which also suggest that the alpha-methylenic hydrogen is mainly under abstraction by Cl atoms. The correlation of room-temperature rate coefficients with ionization potentials for a set of 27 molecules, comprising fluorinated C2-C5 ethers and C2-C4 alcohols, is good with an average deviation of a factor of 2, and is given by the expression log(k) (in cm(3) molecule(-1) s(-1)) = (5.8 +/- 1.4) - (1.56 +/- 0.13) x (ionization potential (in eV)).  相似文献   

2.
Fluorinated alcohols, such as 2,2,3,3-tetrafluoropropanol (TFPO, CHF(2)CF(2)CH(2)OH) and 2,2,3,3,3-pentafluoropropanol (PFPO, CF(3)CF(2)CH(2)OH), can be potential replacements of hydrofluorocarbons with large global warming potentials, GWPs. IR absorption cross sections for TFPO and PFPO were determined between 4000 and 500 cm(-1) at 298 K. Integrated absorption cross sections (S(int), base e) in the 4000-600 cm(-1) range are (1.92 ± 0.34) × 10(-16) cm(2) molecule(-1) cm(-1) and (2.05 ± 0.50) × 10(-16) cm(2) molecule(-1) cm(-1) for TFPO and PFPO, respectively. Uncertainties are at a 95% confidence level. Ultraviolet absorption spectra were also recorded between 195 and 360 nm at 298 K. In the actinic region (λ > 290 nm), an upper limit of 10(-23) cm(2) molecule(-1) for the absorption cross sections (σ(λ)) was reported. Photolysis in the troposphere is therefore expected to be a negligible loss for these fluoropropanols. In addition, absolute rate coefficients for the reaction of OH radicals with CHF(2)CF(2)CH(2)OH (k(1)) and CF(3)CF(2)CH(2)OH (k(2)) were determined as a function of temperature (T = 263-358 K) by the pulsed laser photolysis/laser induced fluorescence (PLP-LIF) technique. At room temperature, the average values obtained were k(1) = (1.85 ± 0.07) × 10(-13) cm(3) molecule(-1) s(-1) and k(2) = (1.19 ± 0.03) × 10(-13) cm(3) molecule(-1) s(-1). The observed temperature dependence of k(1)(T) and k(2)(T) is described by the following expressions: (1.35 ± 0.23) × 10(-12) exp{-(605 ± 54)/T} and (1.36 ± 0.19) × 10(-12) exp{-(730 ± 43)/T} cm(3) molecule(-1) s(-1), respectively. Since photolysis of TFPO and PFPO in the actinic region is negligible, the tropospheric lifetime (τ) of these species can be approximated by the lifetime due to the homogeneous reaction with OH radicals. Global values of τ(OH) were estimated to be of 3 and 4 months for TFPO and PFPO, respectively. GWPs relative to CO(2) at a time horizon of 500 years were calculated to be 8 and 12 for TFPO and PFPO, respectively. Despite the higher GWP relative to CO(2), these species are not expected to significantly contribute to the greenhouse effect in the next decades since they are short-lived species and will not accumulate in the troposphere even as their emissions grow up.  相似文献   

3.
The rate constants for the reactions of OH radicals with CH3OCF2CF3, CH3OCF2CF2CF3, and CH3OCF(CF3)2 have been measured over the temperature range 250–430 K. Kinetic measurements have been carried out using the flash photolysis, laser photolysis, and discharge flow methods combined respectively with the laser induced fluorescence technique. The influence of impurities in the samples was investigated by using gas‐chromatography. The following Arrhenius expressions were determined: k(CH3OCF2CF3) = (1.90) × 10−12 exp[−(1510 ± 120)/T], k(CH3OCF2CF2CF3) = (2.06) × 10−12 exp[−(1540 ± 80)/T], and k(CH3OCF(CF3)2) = (1.94) × 10−12 exp[−(1450 ± 70)/T] cm3 molecule−1 s−1. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 846–853, 1999  相似文献   

4.
The multiple‐channel reactions OH + CH3SCH3 → products, CF3 + CH3SCH3 → products, and CH3 + CH3SCH3 → products are investigated by direct dynamics method. The optimized geometries, frequencies, and minimum energy path are all obtained at the MP2/6‐31+G(d,p) level, and energetic information is further refined by the MC‐QCISD (single‐point) method. The rate constants for eight reaction channels are calculated by the improved canonical variational transition state theory with small‐curvature tunneling contribution over the temperature range 200–3000 K. The total rate constants are in good agreement with the available experimental data and the three‐parameter expressions k1 = 4.73 × 10?16T1.89 exp(?662.45/T), k2 = 1.02 × 10?32T6.04 exp(933.36/T), k3 = 3.98 × 10?35T6.60 exp(660.58/T) (in unit of cm3 molecule?1 s?1) over the temperature range of 200–3000 K are given. Our calculations indicate that hydrogen abstraction channels are the major channels and the others are minor channels over the whole temperature range. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

5.
Rate coefficients for the OH + (CH3)3SiCl (trimethylchlorosilane) gas-phase reaction were measured over the temperature range 295–375 K using a pulsed laser photolysis laser-induced fluorescence technique. The room temperature rate coefficient was determined to be k1(295 K) = (2.51 ± 0.13) × 10−13 cm3 molecule–1 s–1. The Arrhenius expression k1(T) = (7.06 ± 2.15) × 10−12 exp[–(992 ± 101)/T] cm3 molecule–1 s–1, where the quoted uncertainties are 2σ fit precision, describes the measured temperature dependence very well. As part of this work, the infrared spectra of CH3)3SiCl was measured.  相似文献   

6.
The reaction mechanism of CF(3)CH(2)OH with OH is investigated theoretically and the rate constants are calculated by direct dynamics method. The potential energy surface (PES) information, which is necessary for dynamics calculation, is obtained at the B3LYP/6-311G (d, p) level. The single-point energy calculations are performed at the MC-QCISD level using the B3LYP geometries. Complexes, with the energies being less than corresponding reactants and products, are found at the entrance and exit channels for methylene-H-abstraction channel, while for the hydroxyl-H-abstraction channel only entrance complex is located. By means of isodesmic reactions, the enthalpies of the formation for the species CF(3)CH(2)OH, CF(3)CHOH, and CF(3)CH(2)O are estimated at the MC-QCISD//B3LYP/6-311G (d, p) level of theory. The rate constants for two kinds of H-abstraction channels are evaluated by canonical variational transition state theory with the small-curvature tunneling correction (CVT/SCT) over a wide range of temperature 200-2000 K. The calculated results are in good agreement with the experimental values in the temperature region 250-430 K. The present results indicate that the two channels are competitive. Below 289 K, hydroxyl-H-abstraction channel has more contribution to the total rate constants than methylene-H-abstraction channel, while above 289 K, methylene-H-abstraction channel becomes more important and then becomes the major reaction channel.  相似文献   

7.
Photolysis of hydrogen sulphide in argon, nitrogen and carbon monoxide matrices at 20 K produces HS radicals and S atoms. On warming the matrix, H2S2 and S2 molecules are formed as a result of recombination reactions. The latter are identified by a blue-purple emission observed during warm-up of the matrix.  相似文献   

8.
Reaction of Chlorine Nitrate with CF3I: Isolation of Trifluormethylchloroiodinenitrate CF3I(Cl)ONO2 and the Crystal Structure of Trifluormethyliodinedinitrate CF3I(ONO2)2 CF3I reacts with ClONO2 to Iodine(III)-compounds. After an addition CF3I(Cl)ONO2 is isolated and characterized by vibrational spectra. With surplus ClONO2 it is formed CF3I(ONO2)2. CF3I(ONO2)2 crystallizes monoclinic in the space group P21/c with the cell parameters a = 1 024.3(6) pm, b = 873.5(6) pm, c = 873.4(6) pm and Z = 4. We measered following bonding distances: I? O: 207.3(3) and 220.8(2) pm, I? C: 221.1(4) pm and N? O: from 119.1(4) to 141.5(3) pm. Through an intermolecular I ··· O-contact the central iodine becomes a distorted plane geometry.  相似文献   

9.
Rate coefficients over the temperature range 206-380 K are reported for the gas-phase reaction of OH radicals with 2,3,3,3-tetrafluoropropene (CF(3)CF=CH(2)), k(1)(T), and 1,2,3,3,3-pentafluoropropene ((Z)-CF(3)CF=CHF), k(2)(T), which are major components in proposed substitutes for HFC-134a (CF(3)CFH(2)) in mobile air-conditioning units. Rate coefficients were measured under pseudo-first-order conditions in OH using pulsed-laser photolysis to produce OH and laser-induced fluorescence to detect it. Rate coefficients were found to be independent of pressure between 25 and 600 Torr (He, N(2)). For CF(3)CF=CH(2), the rate coefficients, within the measurement uncertainty, are given by the Arrhenius expression k(1)(T)=(1.26+/-0.11) x 10(-12) exp[(-35+/-10)/T] cm(3) molecule(-1) s(-1) where k(1)(296 K)=(1.12+/-0.09) x 10(-12) cm(3) molecule(-1) s(-1). For (Z)-CF(3)CF=CHF, the rate coefficients are given by the non-Arrhenius expression k(2)(T)=(1.6+/-0.2) x 10(-18)T(2) exp[(655+/-50)/T] cm(3) molecule(-1) s(-1) where k(2)(296 K)=(1.29+/-0.06) x 10(-12) cm(3) molecule(-1) s(-1). Over the temperature range most relevant to the atmosphere, 200-300 K, the Arrhenius expression k(2)(T)=(7.30+/-0.7) x 10(-13) exp[(165+/-20)/T] cm(3) molecule(-1) s(-1) reproduces the measured rate coefficients very well and can be used in atmospheric model calculations. The quoted uncertainties in the rate coefficients are 2sigma (95% confidence interval) and include estimated systematic errors. The global warming potentials for CF(3)CF=CH(2) and (Z)-CF(3)CF=CHF were calculated to be <4.4 and <3.6, respectively, for the 100 year time horizon using infrared absorption cross sections measured in this work, and atmospheric lifetimes of 12 and 10 days that are based solely on OH reactive loss.  相似文献   

10.
We present calculations on the parity‐conserving and the parity‐violating potentials in several MeOH isotopomers for the torsional motion by the newly developed methods of electroweak quantum chemistry from our group. The absolute magnitudes of the parity‐violating potentials for MeOH are small compared to H2O2 and C2H4, but similar to C2H6, which is explained by the high (threefold) symmetry of the torsional top in MeOH and C2H6. ‘Chiral’ and ‘achiral’ isotopic substitutions in MeOH lead to small changes only, but vibrational averaging is discussed to be important in all these cases. Simple isotopic sum rules are derived to explain and predict the relationships between parity‐violating potentials in various conformations and configurations of the several isotopomers investigated. The parity‐violating energy difference ΔpvE=Epv(R)?Epv(S) between the enantiomers of chiral CHDTOH, first synthesized by Arigoni and co‐workers, is for two conformers ca. ?3.66?10?17 and for the third one +7.32?10?17 hc cm?1. Thus, for ΔpvE, the conformation is more important than the configuration (at the equilibrium geometries, without vibrational averaging). Averaging over torsional tunneling may lead to further cancellation and even smaller values.  相似文献   

11.
New experimental profiles of stable species concentrations are reported for formaldehyde oxidation in a variable pressure flow reactor at initial temperatures of 850–950 K and at constant pressures ranging from 1.5 to 6.0 atm. These data, along with other data published in the literature and a previous comprehensive chemical kinetic model for methanol oxidation, are used to hierarchically develop an updated mechanism for CO/H2O/H2/O2, CH2O, and CH3OH oxidation. Important modifications include recent revisions for the hydrogen–oxygen submechanism (Li et al., Int J Chem Kinet 2004, 36, 565), an updated submechanism for methanol reactions, and kinetic and thermochemical parameter modifications based upon recently published information. New rate constant correlations are recommended for CO + OH = CO2 + H ( R23 ) and HCO + M = H + CO + M ( R24 ), motivated by a new identification of the temperatures over which these rate constants most affect laminar flame speed predictions (Zhao et al., Int J Chem Kinet 2005, 37, 282). The new weighted least‐squares fit of literature experimental data for ( R23 ) yields k23 = 2.23 × 105T1.89exp(583/T) cm3/mol/s and reflects significantly lower rate constant values at low and intermediate temperatures in comparison to another recently recommended correlation and theoretical predictions. The weighted least‐squares fit of literature results for ( R24 ) yields k24 = 4.75 × 1011T0.66exp(?7485/T) cm3/mol/s, which predicts values within uncertainties of both prior and new (Friedrichs et al., Phys Chem Chem Phys 2002, 4, 5778; DeSain et al., Chem Phys Lett 2001, 347, 79) measurements. Use of either of the data correlations reported in Friedrichs et al. (2002) and DeSain et al. (2001) for this reaction significantly degrades laminar flame speed predictions for oxygenated fuels as well as for other hydrocarbons. The present C1/O2 mechanism compares favorably against a wide range of experimental conditions for laminar premixed flame speed, shock tube ignition delay, and flow reactor species time history data at each level of hierarchical development. Very good agreement of the model predictions with all of the experimental measurements is demonstrated. © 2007 Wiley Periodicals, Inc. 39: 109–136, 2007  相似文献   

12.
Structural and conformational properties of two sulfenyl derivatives, trifluoromethanesulfenyl acetate, CF3S-OC(O)CH3 (1), and trifluoromethanesulfenyl trifluoroacetate, CF3S-OC(O)CF3 (2), were determined by gas electron diffraction, vibrational spectroscopy, in particular with IR (matrix) spectroscopy, which includes photochemical studies, and by quantum chemical calculations. Both compounds exist in the gas phase as a mixture of two conformers, with the prevailing component possessing a gauche structure around the S-O bond. The minor form, 15(5)% in 1 and 11(5)% in 2 according to IR(matrix) spectra, possesses an unexpected trans structure around the S-O bond. The C=O bond of the acetyl group is oriented syn with respect to the S-O bond in both conformers. UV-visible broad band irradiation of 1 and 2 isolated in inert gas matrixes causes various changes to occur. Conformational randomization clearly takes place in 2 with simultaneous formation of CF3SCF3. For 1 the only reaction channel detected leads to the formation of CH3SCF3 with the consequent extrusion of CO2. Quantum chemical calculations (B3LYP/6-31G and MP2 with 6-31G and 6-311G(2df,pd) basis sets) confirm the existence of a stable trans conformer. The calculations reproduce the conformational properties for both compounds qualitatively correct with the exception of the B3LYP method for compound 2 which predicts the trans form to be prevailing, in contrast to the experiment.  相似文献   

13.
Perfluorosalkyl Tellurium Compounds: Oxidation of (CF3)2Te; Preparations and Properties of (CF3)2TeCl2, (CF3)2TeBr2, (CF3)2Te(ONO2)2, and (CF3)2TeO From the oxidation of (CF3)2Te with Cl2, Br2, O2, and ClONO2 the new trifluoromethyl tellurium compounds (CF3)2TeCl2, (CF3)2TeBr2, (CF3)2TeO, and (CF3)2Te(ONO2)2 are prepared. The 19F, 13C and 125Te n.m.r. spectra, the vibrational and mass spectra as well as the chemical properties of these compounds are described. By variation of the reaction conditions CF3TeCl3 and CF3TeBr3 are also formed. It has not been possible to isolate (CF3)2TeI2, but there is some evidence that it is formed as an intermediate. (CF3)2Te reacts with ozone to a very unstable compound, which decomposes at low temperature.  相似文献   

14.
In this paper, two monolayers self-assembled on a silver substrate are compared: a monolayer of n-hexadecanethiol and a monolayer of n-11-perfluorobutylundecanethiol. The protecting properties of both monolayers have been extensively studied by X-ray photoelectron spectroscopy, contact angle, polarization modulation infrared reflection absorption spectroscopy, conventional electrochemical techniques (polarization curves and electrochemical impedance spectroscopy), and scanning vibrating electrode technique. Both monolayers were successfully self-assembled but organization is slightly different, the fluorinated segment introduces small disorganization. Nevertheless, good homogeneous corrosion protection is observed for each monolayer.  相似文献   

15.
Relative rate techniques were used to study the kinetics of the reactions of Cl atoms and OH radicals with CF(3)CH(2)C(O)H and CF(3)CH(2)CH(2)OH in 700 Torr of N(2) or air diluent at 296 +/- 2 K. The rate constants determined were k(Cl+CF(3)CH(2)C(O)H) = (1.81 +/- 0.27) x 10(-11), k(OH+CF(3)CH(2)C(O)H) = (2.57 +/- 0.44) x 10(-12), k(Cl+CF(3)CH(2)CH(2)OH) = (1.59 +/- 0.20) x 10(-11), and k(OH+CF(3)CH(2)CH(2)OH) = (6.91 +/- 0.91) x 10(-13) cm(3) molecule(-1) s(-1). Product studies of the chlorine initiated oxidation of CF(3)CH(2)CH(2)OH in the absence of NO show the sole primary product to be CF(3)CH(2)C(O)H. Product studies of the chlorine initiated oxidation of CF(3)CH(2)CH(2)OH in the presence of NO show the primary products to be CF(3)CH(2)C(O)H (81%), HC(O)OH (10%), and CF(3)C(O)H. Product studies of the chlorine initiated oxidation of CF(3)CH(2)C(O)H in the absence of NO show the primary products to be CF(3)C(O)H (76%), CF(3)CH(2)C(O)OH (14%), and CF(3)CH(2)C(O)OOH (< or =10%). As part of this work, an upper limit of k(O(3)+CF(3)CH(2)CH(2)OH) < 2 x 10(-21) cm(3) molecule(-1) s(-1) was established. Results are discussed with respect to the atmospheric chemistry of fluorinated alcohols.  相似文献   

16.
The complex formed between methanol and tetrafluoromethane has been identified in argon and neon matrixes by help of FTIR spectroscopy. Three fundamentals (nu(OH), nu(FCF), and nu(CO)) were observed for the complex isolated in the two matrixes, and the OH stretch was red shifted in a neon matrix and blue shifted in an argon matrix with respect to the corresponding vibration of the methanol monomer. The theoretical studies of the structure and spectral characteristics of the complexes formed between CH(3)OH and CF(4) were carried out at the MP2 level of theory with the 6-311+G(2df,2pd) basis set. The calculations resulted in three stationary points from which two (I-1, I-2) corresponded to structures involving the O-H...F hydrogen bond and the third one (I-3) to the non-hydrogen-bonded structure. The topological analysis of the distribution of the charge density (AIM theory) confirmed the existence of the hydrogen bond in I-1, I-2 complexes and indicated weak interaction between the oxygen atom of CH(3)OH and three fluorine atoms of CF(4) in the I-3 complex. The comparison of the experimental and theoretical data suggests that in the matrixes only the non-hydrogen-bonded complex I-3 is trapped. The blue/red shift of the complex OH stretching vibration with respect to the corresponding vibration of CH(3)OH in argon/neon matrixes is explained by the different sensitivity of the complex and monomer vibrations to matrix material. The ab initio calculations performed for the ternary CH(3)OH-CF(4)-Ar systems indicated a negligible effect of an argon atom on the binary complex frequencies.  相似文献   

17.
The reaction of tetrakis(chloromethyl)silane, Si(CH2Cl)4, with sodium azide afforded tetrakis(azidomethyl)silane (sila-pentaerythrityl tetraazide, Si(CH2N3)4 (1b)). Nitration of tetrakis(hydroxymethyl)silane, Si(CH2OH)4, with nitric acid resulted in the formation of tetrakis(nitratomethyl)silane (sila-pentaerythritol tetranitrate, Si(CH2ONO2)4 (2b)). Compounds 1b and 2b are extremely shock-sensitive materials and very difficult to handle. Spectroscopic data were obtained as good as sensitivity and safety allowed for umambiguous identification. Quantum chemical calculations (DFT) of the C/Si pairs C(CH2OH)4/Si(CH2OH)4, 1a/1b, and 2a/2b regarding the structures and electronic populations were performed.  相似文献   

18.
The reflected shock tube technique with multipass absorption spectrometric detection of OH radicals at 308 nm (corresponding to a total path length of approximately 4.9 m) has been used to study the dissociation of methanol between 1591 and 2865 K. Rate constants for two product channels [CH3OH + Kr --> CH3 + OH + Kr (1) and CH3OH + Kr --> 1CH2 + H2O + Kr (2)] were determined. During the course of the study, it was necessary to determine several other rate constants that contributed to the profile fits. These include OH + CH3OH --> products, OH + (CH3)2CO --> CH2COCH3 + H2O, and OH + CH3 --> 1,3CH2 + H2O. The derived expressions, in units of cm(3) molecule(-1) s(-1), are k(1) = 9.33 x 10(-9) exp(-30857 K/T) for 1591-2287 K, k(2) = 3.27 x 10(-10) exp(-25946 K/T) for 1734-2287 K, kOH+CH3OH = 2.96 x 10-16T1.4434 exp(-57 K/T) for 210-1710 K, k(OH+(CH3)(2)CO) = (7.3 +/- 0.7) x 10(-12) for 1178-1299 K and k(OH+CH3) = (1.3 +/- 0.2) x 10(-11) for 1000-1200 K. With these values along with other well-established rate constants, a mechanism was used to obtain profile fits that agreed with experiment to within <+/-10%. The values obtained for reactions 1 and 2 are compared with earlier determinations and also with new theoretical calculations that are presented in the preceding article in this issue. These new calculations are in good agreement with the present data for both (1) and (2) and also for OH + CH3 --> products.  相似文献   

19.
A dual-level direct dynamic method is employed to study the reaction mechanisms of CF3CH2OCHF2 (HFE-245fa2; HFE-245mf) with the OH radicals and Cl atoms. Two hydrogen abstraction channels and two displacement processes are found for each reaction. For further study, the reaction mechanisms of its products (CF3CH2OCF2 and CF3CHOCHF2) and parent ether CH3CH2OCH3 with OH radical are investigated theoretically. The geometries and frequencies of all the stationary points and the minimum energy paths (MEPs) are calculated at the B3LYP/6-311G(d,p) level. The energetic information along the MEPs is further refined at the G3(MP2) level of theory. For reactions CF3CH2OCHF2 + OH/Cl, the calculation indicates that the hydrogen abstraction from --CH2-- group is the dominant reaction channel, and the displacement processes may be negligible because of the high barriers. The standard enthalpies of formation for the reactant CF3CH2OCHF2, and two products CF3CH2OCHF2 and CF3CHOCHF2 are evaluated via group-balanced isodesmic reactions. The rate constants of reactions CF3CH2OCHF2 + OH/Cl and CH3CH2OCH3 + OH are estimated by using the variational transition state theory over a wide range of temperature (200-2000 K). The agreement between the theoretical and experimental rate constants is good in the measured temperature range. From the comparison between the rate constants of the reactions CF3CH2OCHF2 and CH3CH2OCH3 with OH, it is shown that the fluorine substitution decreases the reactivity of the C--H bond.  相似文献   

20.
The microwave spectrum of 2,2,2-trifluoroethanethiol, CF3CH2SH, and of one deuterated species, CF3CH2SD, has been investigated in the 7-80 GHz spectral interval. The microwave spectra of the ground and three vibrationally excited states belonging to three different normal modes of one conformer were assigned for the parent species, and the vibrational frequencies of these fundamentals were determined by relative intensity measurements. Only the ground vibrational state was assigned for the deuterated species. The identified form has a synclinal arrangement for the H-S-C-C chain of atoms and the corresponding dihedral angle is 68(5) degrees from synperiplanar (0 degrees). A weak intramolecular hydrogen bond formed between the thiol (SH) group and one of the fluorine atoms is stabilizing this conformer. There is no evidence in the microwave spectrum for the H-S-C-C antiperiplanar form. The hydrogen atom of the thiol group should have the ability to tunnel between two equivalent synclinal potential wells, but no splittings of spectral lines due to tunneling were observed. The microwave work was augmented by quantum chemical calculations at the B3LYP/aug-cc-pVTZ and MP2/aug-cc-pVTZ levels of theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号