首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Cyclocondensation of 2,3,3‐trimefhyl‐3H‐indoles 2 with malonates 3 gives 8‐hydroxy‐10,10‐dimefhyl‐10H‐pyrido[1,2‐a]indol‐6‐ones 4 , which were halogenated in position 7, 8 and 9 with sulfuryl chloride, bromine or phosphoroxychloride to give the corresponding halo‐10,10‐dimethyl‐10H‐pyrido[1,2‐a]indoles 5, 6, 7 and 8 . Amination affords the 8‐amino‐10,10‐dimethyl‐10H‐pyrido[1,2‐a]indol‐6‐one 9 . Nitration gives either the 10,10‐dimethyl‐7‐nitro‐10H‐pyrido[1,2‐a]indoles 10 or 10,10‐dimethyl‐7‐hydroxy‐10H‐pyrido[1,2‐a]indoles 11 , depending on the conditions.  相似文献   

2.
Three α‐phenylmalonamides have been prepared by the selective nucleophilic cleavage of 5,7‐dimethyl‐2‐phenyl‐1‐oxo‐1H‐pyrazolo[1,2‐a]pyrazol‐4‐ylium‐3‐olate in solventless microwave syntheses. The three weak nucleophiles employed were aniline, p‐chloroaniline and m‐toluidine. The α‐phenylmalonamides of these three aniline derivatives could not be prepared using the previously reported solvent syntheses via 3‐oxopyrazolo[1,2‐a]pyrazol‐8‐ylium‐1‐olates. All products were characterised using, infrared spectroscopy, 1H nmr and electrospray mass spectrometry. The single crystal X‐ray structures of the starting pyrazolo‐[1,2‐a]pyrazole and α‐phenylmalon‐m‐toluidide are also reported.  相似文献   

3.
3‐Benzylindole‐2‐carbohydrazides (4) on reaction with triethylorthoformate in a polar solvent like DMF yielded only 10‐benzyl‐1,2‐dihydro‐1‐oxo‐1,2,4‐triazino[4,5‐a]indoles (5) while (4) on reaction with triethylorthoacetate in DMF yielded both 10‐benzyl‐4‐methyl‐1,2‐dihydro‐1‐oxo‐1,2,4‐triazino[4,5‐a]indoles (5) and 3‐benzyl‐2‐(5‐methyl‐1,3,4‐oxadiazol‐2‐yl)indoles (6) instead of only the triazinoindoles as expected. The oxadiazolylindoles (6) were also synthesized by refluxing (4) with excess of orthoesters. The structures of the compounds formed were characterized by their analytical and spectral data.  相似文献   

4.
The imidazo[1,2‐a]pyridine system was investigated as a synthon for the building of very attractive fused triazines, a planar, angular tri‐heterocycle with potential biological activity. Thus ethyl 3‐nitroimidazo[1,2‐a]pyridine‐2‐carboxylate was treated with ammonia or with an excess of primary amines to generate the corresponding substituted nitro carboxamidoimidazopyridines. The nitro substituent in the latter products, was reduced to yield 3‐amino‐2‐carboxamidoimidazo[1,2‐a]pyridine derivatives, which in turn were treated with nitrous acid to furnish 1‐oxo‐2‐substituted pyrido(1′,2′:1,2)imidazo[5,4‐d]‐1,2,3‐triazines.  相似文献   

5.
The synthesis of novel 1‐(1H‐tetrazol‐5‐yl)‐10‐chloro‐1,2,3,4‐tetrahydropyrazino[1,2‐a] indole derivatives starting from the initially prepared 1‐(2‐bromoethyl)‐3‐chloro‐1H‐indole‐2‐carbaldehyde is described. A variety of likely biologically relevant pyrazino[1,2‐a] indole‐based 1,5‐disubstituted tetrazoles was obtained in moderate to high yields via an Ugi‐azide reaction. These reactions presumably proceed by the imine formation, intramolecular cyclization to iminium ion, and nucleophilic addition tandem reactions, respectively.  相似文献   

6.
An efficient methodology has been developed for the synthesis of quinoxalin‐2(1H)‐one derivatives of 2‐phenylimidazo[1,2‐a]pyridines by microwave‐irradiated Hinsberg heterocyclization between 2‐phenylimidazo[1,2‐a]pyridine‐3‐glyoxalates and o‐phenylenediamine using either montmorillonite K‐10 or Yb(OTf)3 as catalysts. Montmorillonite K‐10 was proven to be an efficient catalyst for the heterocyclization reaction between sterically hindered glyoxalate and o‐phenylenediamine only under microwave conditions. The use of Yb(OTf)3/tetrahydrofuran was also found to be an effective catalyst for the above chemical transformation among a series of Lewis acids screened under microwave conditions; however, comparatively lesser yields were obtained as compared with the use of montmorillonite K‐10.  相似文献   

7.
N‐benzimidazol‐2‐yl imidate type 1 reacts with thiourea, carbon disulfide, cyanamide, and hydrazide to give, respectively, [1,2‐a] benzimidazolo‐1,3,5‐triazin‐2‐thione 2 , [1,2‐a] benzimidazolo‐1,3,5‐thiadiazin‐2‐thione 3 , [1,2‐a] benzimidazolo‐1,3,5‐triazin‐2‐amine 4 , and [1,2‐a] benzimidazol‐2‐yl amidrazone 5 with good yields. Structures elucidation of all newly synthesized heterocyclic compounds was based on the data of IR, 1H NMR, 13C NMR, elemental analysis, and MS of some products. © 2010 Wiley Periodicals, Inc. Heteroatom Chem 21:279–283, 2010; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20618  相似文献   

8.
2‐Methyl‐3H‐indoles 1 cyclize with two equivalents of ethyl malonate 2 to form 4‐hydroxy‐11H‐benzo[b]pyrano[3,2‐f]indolizin‐2,5‐diones 3, whereas 2‐mefhyl‐2,3‐dihydro‐1H‐indoles 9 give under similar conditions regioisomer 8‐hydroxy‐5‐methyl‐4,5‐dihydro‐pyrrolo[3,2,1‐ij]pyrano[3,2‐c]quinolin‐7,10‐diones 10 . The pyrone rings of 3 and 9 can be cleaved either by alkaline hydrolysis to give 7‐acetyl‐8‐hydroxy‐10H‐pyrido[1,2‐a]indol‐6‐ones 4 or 5‐acetyl‐6‐hydroxy‐2‐methyl‐1,2‐dihydro‐4H‐pyrrolo‐[3,2,1‐ij]quinolin‐4‐ones 11 , respectively. Chlorination of 3 and 9 with sulfurylchloride gives under subsequent ring opening 7‐dichloroacetyl‐8‐hydroxy‐10H‐pyrido[1,2‐a]indol‐6‐ones 5 or 5‐dichloracetyl‐6‐hydroxy‐2‐methyl‐1,2‐dihydro‐4H‐pyrrolo[3,2,1‐ij]quinolin‐4‐ones 12 . The dichloroacetyl group of 5 can be reduced with zinc to 7‐acetyl‐8‐hydroxy‐10H‐pyrido[1,2‐a]indol‐6‐ones 7. Treatment of the acetyl compounds 4, 7 and 11 with 90% sulfuric acid cleaves the acetyl group and yields 8‐hydroxy‐10H‐pyrido[1,2‐a]‐indol‐6‐ones 6 and 8 , and 6‐hydroxy‐2‐methyl‐1,2‐dihydro‐4H‐pyrrolo[3,2,1‐ij]quinolin‐4‐ones 13 . Reaction of dichloroacetyl compounds 12 with sodium azide yields 6‐hydroxy‐2‐methyl‐5‐(1H‐tetrazol‐5‐ylcarbonyl)‐1,2‐dihydro‐4H‐pyrrolo[3,2,1‐ij]quinolin‐4‐ones 14 via intermediate geminal diazides.  相似文献   

9.
The 2,3‐dihydro‐7‐methyl‐1H,5H‐pyrido[3,2,1‐ij]quinoline‐1,5‐dione derivatives 9 and 10 were prepared from 3‐(5,7‐dimethoxy‐4‐methyl‐2‐oxo‐2H‐quinolin‐1‐yl)propionitrile ( 6 ). Cyclodehydration of the amide 8 gave 1,2‐dihydro‐7,9‐dimethoxy‐6‐methylpyimido[1,2‐a]quinolin‐3‐one ( 11 ).  相似文献   

10.
On irradiation (λ=350 nm) in the presence of 1,1‐dimethoxyethene, naphthalene‐1,2‐dionemonoacetals 1 regioselectively afford 1,1,4,4‐tetramethoxycyclobuta[a]naphthalen‐3‐ones 3 . Sequential deprotection of these bis‐acetals first lead to 1,1‐dimethoxycyclobuta[a]naphthalene‐3,4‐diones 4 and then to cyclobuta[a]naphthalene‐1,3,4‐triones 6 , which, in turn, are converted into (3,4‐dihydro‐3,4‐dioxonaphthalen‐2‐yl)acetates 7 by treatment with SiO2/MeOH/air.  相似文献   

11.
The scope of the Suzuki‐cross‐coupling reaction of 6‐haloimidazo[1,2‐a]pyridines is dependent on the availability of the (hetero)arylboronic acids. Thus, with the aim to develop expanded applications of (hetero)arylations of imidazo[1,2‐a]pyridines, we investigated the Negishi‐ and Stille‐cross‐coupling reactions at the 6‐position. Remarkably, attempts to apply the Negishi‐cross‐coupling conditions to the organozinc derivative prepared from 6‐haloimidazo[1,2‐a]pyridine via a lithium? zinc exchange led to the 5‐phenyl compound 3 in 54% yield instead of the desired 6‐phenyl isomer (Scheme 1). In contrast, various commercially available halogenated five‐ or six‐membered‐ring heterocycles were efficiently coupled to the 6‐(trialkylstannyl)imidazo[1,2‐a]pyridine under Stille conditions (Table 2).  相似文献   

12.
A highly efficient and regioselective synthetic route to 6 H‐isoindolo[2,1‐a]indol‐6‐ones and indeno[1,2‐b]indol‐10(5 H)‐ones through the Pd‐catalyzed cyclocarbonylation of 2‐(2‐bromoaryl)indoles under atmospheric CO pressure has been achieved. Notably, the regioselectivity of the reaction was exclusively dependent on the structural characteristics of the indole substrates. With N‐unsubstituted indoles as the starting materials, the reaction afforded 6H‐isoindolo[2,1‐a]indol‐6‐ones in good‐to‐excellent yields. On the other hand, with N‐substituted indoles as the substrates, the reaction gave indeno[1,2‐b]indol‐10(5 H)‐ones in a highly regioselective manner.  相似文献   

13.
[2‐Alkylthio‐6‐methyl‐4‐oxopyrimidin‐3(4H)‐yl]acetonitriles ( 3‐5 ) treated with sodium methoxide in methanol followed by ammonium chloride were cyclized to 2‐imino‐7‐methyl‐2,3‐dihydroimidazo[1,2‐a]‐pyrimidin‐5(1H)‐ones ( 6‐8 ). Under acid or base‐catalyzed hydrolysis they were converted to 7‐methyl‐imidazo[1,2‐a]pyrimidine‐2,5‐[1H,3H]‐diones ( 9‐11 ), whereas in the reaction with butyl‐ or benzylamine the corresponding 7‐methyl‐2‐(substitutedamino)imidazo[1,2‐a]pyrimidin‐5(3H)‐ones ( 13‐18 ) were produced. The latter were found to exist in two tautomeric forms in CDCl3 solution.  相似文献   

14.
Treatment of 2‐bromoaryl pyrrole/indol‐2‐yl ketones with cesium carbonate in DMF resulted in the formation of 9H‐pyrrolo[1,2‐a]indol‐9‐ones and 10H‐indolo[1,2‐a]indol‐10‐ones in moderate to excellent isolated yields.  相似文献   

15.
The 5,5‐dimethylpyrazolidin‐3‐one ( 4 ), prepared from ethyl 3‐methylbut‐2‐enoate ( 3 ) and hydrazine hydrate, was treated with various substituted benzaldehydes 5a – i to give the corresponding (1Z)‐1‐(arylmethylidene)‐5,5‐dimethyl‐3‐oxopyrazolidin‐1‐ium‐2‐ide azomethine imines 6a – i . The 1,3‐dipolar cycloaddition reactions of azomethine imines 6a – h with dimethyl acetylenedicarboxylate (=dimethyl but‐2‐ynedioate; 7 ) afforded the corresponding dimethyl pyrazolo[1,2‐a]pyrazoledicarboxylates 8a – h , while by cycloaddition of 6 with methyl propiolate (=methyl prop‐2‐ynoate; 9 ), regioisomeric methyl pyrazolo[1,2‐a]pyrazolemonocarboxylates 10 and 11 were obtained. The regioselectivity of cycloadditions of azomethine imines 6a – i with methyl propiolate ( 9 ) was influenced by the substituents on the aryl residue. Thus, azomethine imines 6a – e derived from benzaldehydes 5a – e with a single substituent or without a substituent at the ortho‐positions in the aryl residue, led to mixtures of regioisomers 10a – e and 11a – e . Azomethine imines 6f – i derived from 2,6‐disubstituted benzaldehydes 5f – i gave single regioisomers 10f – i .  相似文献   

16.
Nucleobase‐anion glycosylation of 2‐[(2‐methyl‐1‐oxopropyl)amino]imidazo[1,2‐a]‐1,3,5‐triazin‐4(8H)‐one ( 6 ) with 3,5‐di‐O‐benzoyl‐2‐deoxy‐2‐fluoro‐α‐D ‐arabinofuranosyl bromide ( 8 ) furnishes a mixture of the benzoyl‐protected anomeric 2‐amino‐8‐(2‐deoxy‐2‐fluoro‐D ‐arabinofuranosyl)imidazo[1,2‐a]‐1,3,5‐triazin‐4(8H)‐ones 9 / 10 in a ratio of ca. 1 : 1. After deprotection, the inseparable anomeric mixture 3 / 4 was silylated. The obtained 5‐O‐[(1,1‐dimethylethyl)diphenylsilyl] derivatives 11 and 12 were separated and desilylated affording the nucleoside 3 and its α‐D anomer 4 . Similar to 2′‐deoxy‐2′‐fluoroarabinoguanosine, the conformation of the sugar moiety is shifted from S towards N by the fluoro substituent in arabino configuration.  相似文献   

17.
The reaction of 1‐(2‐aminophenyl)pyrrole with aromatic or heteroaromatic aldehydes in ethanol and catalytic amounts of acetic acid leads to 4,5‐dihydropyrrolo[1,2‐a]quinoxalines in high yields. When aliphatic aldehydes were used under the same conditions, a slow oxidation to the corresponding pyrrolo[1,2‐a]quinoxalines can occur; the oxidation can be avoided by preparing in situ the 5‐acetyl derivatives of the 4,5‐dihydropyrrolo[1,2‐a]quinoxalines.  相似文献   

18.
Reaction of 1‐amino‐3‐arylpyrido[1,2‐a]benzimidazole‐2,4‐dicarbonitrile (1) with dimethylformamide‐dimethylacetal (DMF‐DMA) gave 1 ‐[N,N‐(dimethylaminomethylene)amino]‐3‐arylpyrido[1,2‐a]benzimidazole‐2,4‐dicarbonitrile (2). Compounds (1) reacted with triethylorthoformate yielding 1‐[N‐(ethoxymethylene)amino]‐3‐arylpyrido[1,2‐a]benzimidazole‐2,4‐dicarbonitrile (3). 3‐Amino‐4‐imino‐5‐aryl‐6‐cyanopyrimido[5′,4′:5,6]pyrido[1,2‐α] benzimidazole (4) was synthesized via condensation of either (2) or (3) with hydrazine hydrate. Reactions of (4) with acetic anhydride, ethyl chloroformate or aryl isothiocyanate yielded the respective derivative of the new ring system namely 1,2,4‐triazolo[2″,3″:6′,1′]pyrimido[4′,5′:2,3]pyrido[1,2‐a]benzimidazole (5–7).  相似文献   

19.
3‐Nitrosoimidazo[1,2‐a]pyridine, 3‐nitrosoimidazo[1,2‐a]pyrimidine, 3‐nitrosoquinoxaline, 2‐nitroso‐4H‐benzo[b]thiazine, 2‐nitroso‐4H‐benzo[b]oxazine, isoxazoles, isoxazolo[3,4‐d]pyridazines and pyrrolo[3,4‐d]isoxazole‐4,6‐dione were synthesized from 2‐chloro‐2‐(hydroximino)‐1‐(4‐methyl‐2‐phenylthiazol‐5‐yl)ethanone and different reagents. Structures of the newly synthesized compounds were confirmed by elemental analysis and spectral data.  相似文献   

20.
This paper describes the preparation of some pyrazolo[1,5‐a]‐, 1,2,4‐triazolo[1,5‐a]‐ and imidazo[1,2‐a]‐pyrimidines substituted on the pyrimidine moiety by a 4‐[(N‐acetyl‐N‐ethyl)amino]phenyl group. A new synthesis of related benzo[h]pyrazolo[1,5‐a]‐, benzo[h]pyrazolo[5,1‐b]‐ and benzo[h]1,2,4‐triazolo[1,5‐a]‐quinazolines is also reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号