The electrochemical oxidation of dimethyl‐p‐phenylenediamine (DMPD) in aqueous solution (pH 7 phosphate buffer) has been studied under conventional hydrodynamic and microelectrode voltammetric conditions and found to undergo a two‐electron electrochemically reversible oxidation. Upon the application of ultrasound to the system an observed shoulder emerges in the oxidation wave. This effect has been attributed to the resolution of the two‐electron transfer processes occurring: the first a relatively fast electron transfer (0.1 cm s?1) followed by a second slower (10?3 cm s?1) electron transfer: under the very high mass transport rates induced by insonation an overpotential develops for the second electron transfer so leading to the observed voltammetric resolution. The range of mass transport conditions accessible via sonication allows the estimation of the two rate constants reported. 相似文献
A selective N‐arylation of cyclic amides and amines in DMF and water, respectively, catalysed by CuII/Al2O3 has been achieved. This protocol has been employed for the synthesis of a library of arenes bearing a cyclic amide and an amine moiety at two ends, including a few scaffolds of therapeutic importance. The mechanism has been established based on detailed electron paramagnetic resonance (EPR) spectroscopy, X‐ray photoelectron spectroscopy (XPS), UV diffuse reflectance spectroscopy (DRS) and inductively coupled plasma‐mass spectrometry (ICP‐MS) studies of the catalyst at different stages of the reaction. The CuII/Al2O3 catalyst was recovered and recycled for subsequent reactions. 相似文献
Abstract Two spectrophotometric procedures for the assay of three corticosteroid drugs through oximation and subsequent charge transfer complexation with two electron acceptor substances are proposed. The optimum experimental conditions, and molar ratio of reactants were studied. The applicability of the proposed procedures to assay the tested compounds in tablets from and comparison with an official method revealed the reliability, sensitivity and accuracy of the suggested procedures. 相似文献
Chemically induced dynamic nuclear polarization (CIDNP) observed during electron transfer (ET) reactions of tertiary amines such as DABCO ( 1 ) or Et3N ( 2 ) with a wide range of electron acceptors support the involvement of amine radical‐cations (e.g., 1. + or 2. + ) as key intermediates. Radical ions such as 2. + may be deprotonated, generating neutral aminoalkyl radicals (e.g., 2. ). When generated by reaction with an electron acceptor of energetically low triplet state such as naphthalene (1Naph*), the resulting pair 2. + /Naph.? reacts mostly by reverse electron transfer (RET) from triplet pairs populating the naphthalene triplet state. 相似文献
Although 1,2‐cyclic sulfamidates derived from α‐methylisoserine undergo nucleophilic displacement at the quaternary center, to the best of our knowledge their behavior with amines as nucleophiles has never been explored. We have found that a broad range of amines can be used, demonstrating the scope of the reaction, and that excellent control of the chemoselectivity can be achieved. Application of this methodology for the synthesis of a chiral α,β‐diamino acid and an important piperazinone heterocycle is also presented. Additionally, we have found that DMF and DMSO behave not only as polar aprotic solvents but also as O‐nucleophilic reagents, allowing the incorporation of an oxygen atom at a quaternary center of the electrophile, with inversion of configuration. 相似文献
The systematic synthesis and photophysical, electrochemical and computational studies on an extended series of triphenylamine‐[C?C‐1,4‐C6H2(OR)2]n‐C?C‐diphenyl‐1,3,4‐oxadiazole dyad molecules (the OR groups are at 2,5‐positions of the para‐phenylene ring and R=C6H13; n=0–5, compounds 1 , 2 , 3 , 4 and 5 , respectively) are reported. Related molecules with identical end groups, triphenylamine‐C?C‐1,4‐C6H2(OR)2‐C?C‐triphenylamine (R=C6H13; 6 ) and diphenyl‐1,3,4‐oxadiazole‐[C?C‐C6H2(OR)2]2‐C?C‐diphenyl‐1,3,4‐oxadiazole (R=C6H13; 7 ) were also studied. These D–B–A 1 – 5 , D–B–D 6 and A–B–A 7 (D=electron donor, B=bridge, A=electron acceptor) systems were synthesized using palladium‐catalysed cross‐coupling reactions of new p‐phenyleneethynylene building blocks. Steady‐state emission studies on the dyads 1 – 5 reveal a complicated behavior of the emission that is strongly medium dependent. In low polarity solvents the emission is characterized by a sharp high‐energy peak attributed to fluorescence from a locally excited (LE) state. In more polar environments the LE state is effectively quenched by transfer into an intramolecular charge‐transfer (ICT) state. The medium dependence is also observed in the quantum yields (QYs) which are high in cyclohexane and low in acetonitrile, thus also indicating charge‐transfer character. Low‐temperature emission spectra for 2 – 5 in dichloromethane and diethyl ether also reveal two distinct excited states, namely the LE state and the conventional ICT state, depending on solvent and temperature. Hybrid DFT calculations for 1 – 7 establish that the OPE bridge is involved in both frontier orbitals where the bridge character increases as the bridge length increases. Computed TD‐DFT data on 1 – 5 assign the emission maxima in cyclohexane as LE transitions. Each time‐resolved emission measurement on 2 – 7 in cyclohexane and diethyl ether reveals a wavelength dependent bi‐exponential decay of the emission with a fast component in the 5–61 ps range on blue detection and a slower approximately 1 ns phase, independent of detection wavelength. The fast component is attributed to LE fluorescence and this emission component is rate limited and quenched by transfer into an ICT state. The fast LE fluorescence component varies systematically with conjugation length for the series of D–B–A dyads 2 – 5 . An attenuation factor β of 0.15 Å?1 was determined in accordance with an ICT superexchange mechanism. 相似文献
Tetranuclear, intensely blue‐coloured CuI complexes were synthesised in which two Cu2X3? units (X=Br or I) are bridged by a dicationic GFA (guanidino‐functionalised aromatic) ligand. The UV/Vis spectra show a large metal‐to‐ligand charge‐transfer (MLCT) band around 638 nm. The tetranuclear “low‐temperature” complexes are in a temperature‐dependent equilibrium with dinuclear CuI “high‐temperature” complexes, which result from the reversible elimination of two CuX groups. A massive thermochromism effect results from the extinction of the strong MLCT band upon CuX elimination with increasing temperature. For all complexes, quantum chemical calculations predict a small and method‐dependent energy difference between the possible electronic structures, namely CuI and dicationic GFA ligand (closed‐shell singlet) versus CuII and neutral GFA ligand (triplet or broken‐symmetry state). The closed‐shell singlet state is disfavoured by hybrid‐DFT functionals, which mix in exact Hartree–Fock exchange, and is favoured by larger basis sets and consideration of a polar medium. 相似文献
Walking a tight wire: Phototriggered charge transfer across a tetra‐p‐dimethoxybenzene bridge is three orders of magnitude faster than that across a structurally similar tetra‐p‐xylene spacer, despite equal reaction driving forces in both cases (see picture). This result is interpreted in terms of markedly different donor–bridge energy gaps.
Mixed‐valence trinuclear carboxylates, [M3O(O2CR)6L3] (M=metal, L=terminal ligand), have small differences in potential energy between the configurations MIIMIIIMIII?? MIIIMIIMIII??MIIIMIIIMII, which means that small external changes can have large structural effects, owing to the differences in coordination geometry between M2+ and M3+ sites (e.g., about 0.2 Å for Fe? O bond lengths). It is well‐established that the electron transfer (ET) between the metal sites in these mixed‐valence molecules is strongly dependent on temperature and on the specific crystal environment; however, herein, for the first time, we examine the effect of pressure on the electron transfer. Based on single‐crystal X‐ray diffraction data that were measured at 15, 90, 100, 110, 130, 160, and 298 K on three different crystals, we first unexpectedly found that our batch of Fe3O (O2CC(CH3)3)6(C5H5N)3 ( 1 ) exhibited a different temperature dependence of the ET process than previous studies of compound 1 have shown. We observed a phase transition at around 130 K that was related to complete valence trapping and Hirshfeld surface analysis revealed that this phase transition was governed by a subtle competition between C? H???π and π???π intermolecular interactions. Subsequent high‐pressure single‐crystal X‐ray diffraction at pressures of 0.15, 0.35, 0.45, 0.74, and 0.96 GPa revealed that it was not possible to trigger the phase transition (i.e., valence trapping) by a reduction of the unit‐cell volume, owing to this external pressure. We conclude that modulation of the ET process requires anisotropic changes in the intermolecular interactions, which occur when various directional chemical bonds are affected differently by changes in temperature, but not by the application of pressure. 相似文献
The reaction of chlorine and N,N‐diethyl‐p‐phenylenediamine has been studied as a means of generating an analytical voltammetric signal of much improved sensitivity and selectivity for the detection of the former than is possible via direct electrolysis. A reaction mechanism is suggested whereby the chlorine attacks the primary amine of DEPD to form the N‐chlorinated product that shows a much enhanced signal under conditions of square‐wave voltammetry than does chlorine itself. The analytical parameters were found to vary with concentration of DEPD and a linear range from 17 to 495 μM was achievable with a corresponding limit of detection of 6.8 μM 相似文献
A comparative study on the catalytic activity of a series of [IrCl2Cp*(NHC)] complexes in several C–O and C–N coupling processes implying hydrogen‐borrowing mechanisms has been performed. The compound [IrCl2Cp*(InBu)] (Cp*=pentamethyl cyclopentadiene; InBu=1,3‐di‐n‐butylimidazolylidene) showed to be highly effective in the cross‐coupling reactions of amines and alcohols, providing high yields in the production of unsymmetrical ethers and N‐alkylated amines. A remarkable feature is that the processes were carried out in the absence of base, phosphine, or any other external additive. A comparative study with other known catalysts, such as Shvo's catalyst, is also reported. 相似文献
We explore the application of a previously suggested formula for determining the degree of charge transfer in surface‐enhanced Raman scattering (SERS). SERS is often described as a phenomenon which obtains its enhancement from three major sources, namely the surface plasmon resonance, charge‐transfer resonances as well as possible molecular resonances. At any chosen excitation wavelength, it is possible to obtain contributions from several sources and this has led to considerable confusion. The formula for the degree of charge transfer enables one to separate these effects, but it requires that spectra be obtained either at two or more different excitation wavelengths or as a function of applied potential. We apply this formula to several examples, which display rather large charge‐transfer contributions to the spectrum. These are p‐aminothiophenol (PATP), tetracyano‐ ethylene (TCNE) and piperidine. In PATP we can show that several lines of the same symmetry give the same degree of charge transfer. In TCNE we are able to identify the charge‐transfer transition, which contributes to the effect, and are able to independently determine the degree of charge transfer by wavenumber shifts. This enables a comparison of the two techniques of measurement. In piperidine, we present an example of molecule to metal charge transfer and show that our definition of charge transfer is independent of direction. 相似文献
Four new donor‐π‐acceptor dyes differing in their acceptor group have been synthesized and employed as model systems to study the influence of the acceptor groups on the photophysical properties and in NiO‐based p‐type dye‐sensitized solar cells. UV/Vis absorption spectra showed a broad range of absorption coverage with maxima between 331 and 653 nm. Redox potentials as well as HOMO and LUMO energies of the dyes were determined from cyclic voltammetry measurements and evaluated concerning their potential use as sensitizers in p‐type dye‐sensitized solar cells (p‐DSCs). Quantum‐chemical density functional theory calculations gave further insight into the frontier orbital distributions, which are relevant for the electronic processes in p‐DSCs. In p‐DSCs using an iodide/triiodide‐based electrolyte, the polycyclic 9,10‐dicyano‐acenaphtho[1,2‐b]quinoxaline (DCANQ) acceptor‐containing dye gave the highest power conversion efficiency of 0.08 %, which is comparable to that obtained with the perylenemonoimide (PMI)‐containing dye. Interestingly, devices containing the DCANQ‐based dye achieve a higher VOC of 163 mV compared to 158 mV for the PMI‐containing dye. The result was further confirmed by impedance spectroscopic analysis showing higher recombination resistance and thus a lower recombination rate for devices containing the DCANQ dye than for PMI dye‐based devices. However, the use of the strong electron‐accepting tricyanofurane (TCF) group played a negative role in the device performance, yielding an efficiency of only 0.01 % due to a low‐lying LUMO energy level, thus resulting in an insufficient driving force for efficient dye regeneration. The results demonstrate that a careful molecular design with a proper choice of the acceptor unit is essential for development of sensitizers for p‐DSCs. 相似文献