首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction of atomic hydrogen with isocyanic acid (HNCO) to produce the amidogen radical (NH2) and carbon monoxide, has been studied in shock-heated mixtures of HNCO dilute in argon. Time-histories of the ground-state NH2 radical were measured behind reflected shock waves using cw, narrowlinewidth laser absorption at 597 nm, and HNCO time-histories were measured using infrared emission from the fundamental v2-band of HNCO near 5 μm. The second-order rate coefficient of reaction (2(a)) was determined to be: cm3 mol?1 s?1, where f and F define the lower and upper uncertainty limits, respectively. An upper limit on the rate coefficient of was determined to be:   相似文献   

2.
The reaction between methyl and hydroxyl radicals has been studied in reflected shock wave experiments using narrow‐linewidth OH laser absorption. OH radicals were generated by the rapid thermal decomposition of tert‐butyl hydroperoxide. Two different species were used as CH3 radical precursors, azomethane and methyl iodide. The overall rate coefficient of the CH3 + OH reaction was determined in the temperature range 1081–1426 K under conditions of chemical isolation. The experimental data are in good agreement with a recent theoretical study of the reaction. The decomposition of methanol to methyl and OH radicals was also investigated behind reflected shock waves. The current measurements are in good agreement with a recent experimental study and a master equation simulation. © 2008 Wiley Periodicals, Inc. 40: 488–495, 2008  相似文献   

3.
The rate coefficient for the reaction has been determined in mixtures of nitric acid (HNO3) and argon in incident shock wave experiments. Quantitative OH time-histories were obtained by cw narrow-linewidth uv laser absorption of the R1(5) line of the A2 σ+X2 Πi (0,0) transition at 32606.56 cm?1 (vacuum). The experiments were conducted over the temperature range 1050–2380 K and the pressure range 0.18–0.60 atm. The second-order rate coefficient was determined to be with overall uncertainties of +11%, ?16% at high temperatures and +25%, ?22% at low temperatures. By incorporating data from previous investigations in the temperature range 298–578 K, the following expression is determined for the temperature range 298–2380 K © 1994 John Wiley & Sons, Inc.  相似文献   

4.
5.
The reaction of Y+ + NH3 → Y+ NH + H2 was theoretically investigated by ab initio MO methods. Two possible pathways (1–1 H2 loss and 1–2 H2 loss) on the singlet potential energy surface and reaction mechanism were examined and discussed. The singlet and triplet PESs of this reaction system were compared to confirm the correctness of spin conservation concepts. © 1996 John Wiley & Sons, Inc.  相似文献   

6.
We report variational transition‐state theory calculations for the OH + O3→ HO2 + O2 reaction based on the recently reported double many‐body expansion potential energy surface for ground‐state HO4 [Chem Phys Lett 2000, 331, 474]. The barrier height of 1.884 kcal mol?1 is comparable to the value of 1.77–2.0 kcal mol?1 suggested by experimental measurements, both much smaller than the value of 2.16–5.11 kcal mol?1 predicted by previous ab initio calculations. The calculated rate constant shows good agreement with available experimental results and a previous theoretical dynamics prediction, thus implying that the previous ab initio calculations will significantly underestimate the rate constant. Variational and tunneling effects are found to be negligible over the temperature range 100–2000 K. The O1? O2 bond is shown to be spectator like during the reactive process, which confirms a previous theoretical dynamics prediction. © 2007 Wiley Periodicals, Inc. 39: 148–153, 2007  相似文献   

7.
Transition state wave packet calculations have been carried out to obtain the thermal rate constants for the H+CH(4) reaction on the Jordan-Gilbert potential energy surface. The eight-dimensional model for the X+YCZ(3) type of reaction was employed by restricting the nonreacting CZ(3) group under a C(3V) symmetry. We calculated the cumulative reaction probability for the total angular momentum J=0, from which the thermal rate constants were obtained for the temperature range between 250 and 500 K by employing the J-K shifting approximation. It is found that the eight-dimensional rate constants agree very well with the seven dimensional ones, in which the CH bond length in the nonreacting CH(3) group is fixed, suggesting that the additional mode for the symmetry stretching in CH(3) group does not have any important effect on the reaction within the temperature range considered here. The present transition state wave packet results agree well with rate constants obtained from the previous seven dimensional initial state selected wave packet study, indicating the consistence of the treatments involved in these two studies. On the other hand, it is found that the energy threshold for the cumulative reaction probability for J=0 from the present study is higher than that from the full dimensional multiconfiguration time-dependent Hartree study by about 0.06 eV, resulting in severe discrepancy between the present rate constants and the multiconfiguration time-dependent Hartree results.  相似文献   

8.
A flash photolysis system has been used to study the rate of reaction (1), OH + CH4 → CH3 + H2O, using time-resolved resonance absorption to monitor OH. The temperature was varied between 300 and 900°K. It is found that the Arrhenius plot of k1 is strongly curved and k1 (T) can best be represented by the expression The apparent Arrhenius activation energy changes from 15±1 kJ/mole at 300°K to 32±2 kJ/mole at 1000°K. On either side of our temperature range, both absolute rates and their temperature dependence are in good agreement with the results from most previous investigations.  相似文献   

9.
An ab initio study on the reaction of the ground state (3D) and the excited state (1D) of Sc+ with methane was performed. Reaction channels on the singlet and triplet potential surface (PES) and the reaction mechanism are examined and discussed. Three regions of the potential surface was studied: the molecular complex, the C(SINGLE BOND)H insertion products, and the transition states for the reaction. Comparisons between singlet and triplet PESs show that the excited state (1D) of Sc+ has more reactivity with methane than does the ground state (3D) due to the spin quantum number conservation with the more stable insertion intermediate. © 1997 John Wiley & Sons, Inc.  相似文献   

10.
The homogeneous exchange reaction between tetradeutero methane and ammonia was studied behind reflected shocks in a single-pulse shock tube over the temperature range of 1300–1800°K. The rate of production of CD3H at the early stages of the reaction in mixtures ranging between 1-4.5% NH3 and 1–4.3% CD4 in argon is given by d[CD3H]/dt=kb [CD4]0[NH3]0, where kb=8 × 1016 exp (?65.3 × 103/RT) cm3/mole·sec. This activation energy is considerably lower than the one that may be expected on the basis of a pure free radical mechanism. It is rationalized by C2D6 impurities in the methane. No clear answer can be obtained regarding the role of a four-center intermediate in this reaction.  相似文献   

11.
We present a direct ab initio dynamics study of thermal rate constants of the hydrogen abstraction reaction of CH4 + O3 → HOOO +CH3. The geometries of all the stationary points are optimized at MPW1K/6‐31+G(d,p), MPWB1K/6‐31+G(d,p), and BHandHLYP/6‐31+G(d,p) levels of theory. The energies are refined at a multi‐high‐level method. The extended Arrhenius expression fitted from the CVT/SCT and μVT/Eckart rate constants of ozonolysis of methane in the temperature range 200–2500 K are kCVT/SCT(T) = 5.96 × 10?29T4.49e(?17321.3/T) and kμVT/Eckart(T) = 7.92 × 10?29T4.46e(?17301.7/T), respectively. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

12.
The dynamics of the NH + H→N+H2 reaction has been investigated by means of the 3D quasiclassical trajectory approach by using the LEPS potential energy surface.The calculated rate coefficient is in good agreement with the experimental value.The reaction was found to occur via a direct channel.The product H2 has a cold excitation of rotational state,but has a reverse distribution of the vibrational state with a peak at v=1.Based on the potential energy surface and the trajectory analysis,the reaction mechanism has been explained successfully.  相似文献   

13.
The reaction of CH2O with NO2 has been studied with a shock tube equipped with two stabilized ew CO lasers. The production of CO, NO, and H2O has been monitored with the CO lasers in the temperature range of 1140–1650 K using three different Ar-diluted CH2O-NO2 mixtures. Kinetic modeling and sensitivity analysis of the observed CO, NO, and H2O production profiles over the entire range of reaction conditions employed indicate that the bimolecular metathetical reaction, NO2 + CH2O → HONO + CHO (1) affects most strongly the yields of these products. Combination of the kinetically modeled values of ??1 with those obtained recently from a low temperature pyrolytic study, ref. [8], leads to for the broad temperature range of 300–2000 K.  相似文献   

14.
Kinetics of the hydrogen abstraction reaction (*)CH(3) + CH(4) --> CH(4) + (*)CH(3) is studied by a direct dynamics method. Thermal rate constants in the temperature range of 300-2500 K are evaluated by the canonical variational transition state theory (CVT) incorporating corrections from tunneling using the multidimensional semiclassical small-curvature tunneling (SCT) method and from the hindered rotations. These results are used in conjunction with the Reaction Class Transition State Theory/Linear Energy Relationship (RC-TST/LER) to predict thermal rate constants of any reaction in the hydrogen abstraction class of (*)CH(3) + alkanes. Our analyses indicate that less than 40% systematic errors on the average exist in the predicted rate constants using the RC-TST/LER method while comparing to explicit rate calculations the differences are less than 100% or a factor of 2 on the average.  相似文献   

15.
The rate constant for the reaction \documentclass{article}\pagestyle{empty}\begin{document}${\rm Cl} + {\rm CH}_4 \mathop {\longrightarrow}\limits^1 {\rm CH}_3 + {\rm HCl}$\end{document} has been determined over the temperature range of 200°–500°K using a discharge flow system with resonance fluorescence detection of atomic chlorine under conditions of large excess CH4. For 300° > T > 200°K the data are best fitted to the expression k1 = (8.2 ± 0.6) × 10?12 exp[?(1320 ± 20)/T] cm3/sec. Curvature is observed in the Arrhenius plot such that the effective activation energy increases from 2.6 kcal/mol at 200° < T < 300°K to 3.5 kcal/mol at 360° < T < 500°K. The data over the entire range may be fitted by the expression k1 = 8.6×10?18 T2.11 exp[?795/T]. These results are compared with other experimental studies and with a semiempirical transition state calculation. Their atmospheric significance is discussed.  相似文献   

16.
The minimum energy path (MEP) of the reaction, CF3CHFCF3 + H → transition state (TS) → CF3CFCF3 + H2, has been computed at different ab initio levels and with density functional theory (DFT) using different functionals. The computed B3LYP/6‐31++G**, BH&HLYP/cc‐pVDZ, BMK/6‐31++G**, M05/6‐31+G**, M05‐2X/6‐31+G**, UMP2/6‐31++G**, PUMP2/6‐31++G**//UMP2/6‐31++G**, RCCSD(T)/aug‐cc‐pVDZ//UMP2/6‐31++G**, RCCSD(T)/aug‐cc‐pVTZ(spd,sp)//UMP2//6‐31++G**, RCCSD(T)/CBS//M05/6‐31+G**, and RCCSD(T)/CBS//UMP2/6‐31++G** MEPs, and associated gradients and Hessians, were used in reaction rate coefficient calculations based on the transition state theory (TST). Reaction rate coefficients were computed between 300 and 1500 K at various levels of TST, which include conventional TST, canonical variational TST (CVT) and improved CVT (ICVT), and with different tunneling corrections, namely, Wigner, zero‐curvature, and small‐curvature (SCT). The computed rate coefficients obtained at different ab initio, DFT and TST levels are compared with experimental values available in the 1000–1200 K temperature range. Based on the rate coefficients computed at the ICVT/SCT level, the highest TST level used in this study, the BH&HLYP functional performs best among all the functionals used, while the RCCSD(T)/CBS//MP2/6‐31++G** level is the best among all the ab initio levels used. Comparing computed reaction rate coefficients obtained at different levels of theory shows that, the computed barrier height has the strongest effect on the computed reaction rate coefficients as expected. Variational effects on the computed rate coefficients are found to be negligibly small. Although tunneling effects are relatively small at high temperatures (~1500 K), SCT corrections are significant at low temperatures (~300 K), and both barrier heights and the magnitudes of the imaginary frequencies affect SCT corrections. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
The rate coefficients for the reactions were determined using mixtures of HNO3/CO/Ar and HNO3/HNCO/Ar in incident shock wave experiments. Simultaneous OH and CO2 absorption time-histories were obtained via cw uv narrow-linewidth absorption at 32606.56 cm−1 (λ = 306.687 nm) and cw infrared narrow-linewidth absorption at 2380.72 cm−1 (λ = 4.2004 μm), respectively. The measurements of k1 determined from measured CO2 time-histories are in good agreement with those determined from previous measurements of OH time-histories at this laboratory. The rate coefficient for the overall reaction of HNCO + OH → Products was determined from analysis of OH data traces. The uncertainty in k2 was found to be +22% −16%. By incorporating data from a previous low-temperature study, the following empirical expression was determined for the bimolecular reaction: over the temperature range 620–1860 K. From analysis of CO2 data traces, an upper limit on the branching fraction (α = k2a/k2) for reaction (2a) of 10% was found, independent of temperature over the range 1250–1860 K. © 1996 John Wiley & Sons, Inc.  相似文献   

18.
The hydrogen abstraction reaction of Cl atoms with CF3CH2Cl (HCFC‐133a) is investigated by using density function theory and ab initio approach, and the rate constants are calculated by using the dual‐level direct dynamics method. Optimized geometries and frequencies of reactants, transition state, and products are computed at the B3LYP/6‐311+G(2d,2p) level. To refine the energetic information along the minimum energy path, single‐point energy calculations are carried out at the G3(MP2) level of theory. The interpolated single‐point energy method is employed to correct the energy profiles for the title reaction. The rate constants are evaluated by using the canonical variational transition state theory with a small‐curvature tunneling correction over a wide range of temperature, 200–2000 K. The variational effect for the reaction is moderate at low temperatures and very small at high temperatures. However, the tunneling correction has an important contribution in the lower temperature range. The agreement between calculated rate constants and available experimental values is good at lower temperatures but diverges significantly at higher temperatures. © 2012 Wiley Periodicals, Inc. Int J Chem Kinet 44: 661–667, 2012  相似文献   

19.
In the course of an extensive investigation aimed at understanding the detailed mechanism of a prototypical polyatomic reaction, several remarkable observations were uncovered. To interpret these findings, we surmise the existence of a reactive resonance in this polyatomic reaction. The concerned system is HO + CH4 → H2O + CH3, of which the partial potential energy surface is constructed by the coupling between vibrational models and reactive coordinates. Then we explain the formation mechanism of the reactive resonance state by the partial potential energy surface. Finally, we estimated the lifetime of the resonance state, and it is about 45fs. The study of the reactive resonance in a polyatomic reaction is more than just an extension from a typical atom + diatom reaction. As shown here, it holds great promise to disentangle the elusive intramolecular vibrational dynamics of the transient collision complex in the critical transition‐state region. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

20.
The rate constant for the NH3 + NO2 rlhar2; NH2 + HONO reaction (1) has been kinetically modeled by using the photometrically measured NO2 decay rates available in the literature. The rates of NO2 decay were found to be strongly dependent on reaction (1) and, to a significant extent, on the secondary reactions of NH2 with NOX and the decomposition of HONO formed in the initiation reaction. These secondary reactions lower the values of k1 determined directly from the experiments. Kinetic modeling of the initial rates of NO2 decay computed from the reported rate equation, - d[NO2]/dt = k1[NH3][NO2] based on the conditions employed led to the following expression: This result agrees closely with the values predicted by ab initio MO [G2M//B3LYP/6-311 G(d,p)] and TST calculations. © 1997 John Wiley & Sons, Inc. Int J Chem Kinet 29: 245–251, 1997.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号