首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
The influence of total surface energy on bacterial adhesion has been investigated intensively with the frequent conclusion that bacterial adhesion is less on low-energy surfaces. However, there are also a number of contrary findings that high-energy surfaces have a smaller biofouling tendency. Recently, it was found that the CQ ratio, which is defined as the ratio of Lifshitz-van der Waals (LW) apolar to electron donor surface-energy components of substrates, has a strong correlation to bacterial adhesion. However, the electron donor surface-energy components of substrates varied over only a very limited range. In this article, a series of Ni-P-TiO(2)-PTFE nanocomposite coatings with wide range of surface-energy components were prepared using an electroless plating technique. The bacterial adhesion and removal on the coatings were evaluated with different bacteria under both static and flow conditions. The experimental results demonstrated that there was a strong correlation between bacterial attachment (or removal) and the CQ ratio. The coatings with the lowest CQ ratio had the lowest bacterial adhesion or the highest bacterial removal, which was explained using the extented DLVO theory.  相似文献   

2.
Coupling of combinatorial chemistry methods with high-throughput (HT) performance testing and measurements of resulting properties has provided a powerful set of tools for the 10-fold accelerated discovery of new high-performance coating materials for automotive applications. Our approach replaces labor-intensive steps with automated systems for evaluation of adhesion of 8 x 6 arrays of coating elements that are discretely deposited on a single 9 x 12 cm plastic substrate. Performance of coatings is evaluated with respect to their resistance to adhesion loss, because this parameter is one of the primary considerations in end-use automotive applications. Our HT adhesion evaluation provides previously unavailable capabilities of high speed and reproducibility of testing by using a robotic automation, an expanded range of types of tested coatings by using the coating tagging strategy, and an improved quantitation by using high signal-to-noise automatic imaging. Upon testing, the coatings undergo changes that are impossible to quantitatively predict using existing knowledge. Using our HT methodology, we have developed several coatings leads. These HT screening results for the best coating compositions have been validated on the traditional scales of coating formulation and adhesion loss testing. These validation results have confirmed the superb performance of combinatorially developed coatings over conventional coatings on the traditional scale.  相似文献   

3.
We perform oil coating of hydrophobic solid surfaces via aqueous media, from emulsions, and under the presence of a shear flow. The principle of such coating is based on the use of a system at the limit of aggregation to give rise to adhesion, with asymmetrical interfaces (oil droplet/water and solid surface/water) in order to favor the oil/surface adhesion in comparison to the oil/oil adhesion. This way, droplets stick to the solid substrate, whereas they are stable and homogeneously dispersed in the bulk. We have realized coatings from two systems of emulsions made of a mixture of hydroxy-terminated silicone oil and classical silicone oil and a mixture of sunflower oil and mineral oil. The kinetics of the coating is described by a Langmuir model where the adhesion between the oil particle and the surface is modeled as a first-order reaction. The resulting coatings are formed of oil droplets uniformly covering the solid surface. The coating density can vary with the nature of the experimental systems.  相似文献   

4.
Self‐cleaning surfaces have received a great deal of attention, both in research studies and commercial applications. Both transparent and non‐transparent self‐cleaning surfaces are highly desirable as they offer many advantages, and their potential applications are endless. The self‐cleaning mechanism can be seen in nature. The Lotus flower, a symbol of purity in Asian cultures, grows in muddy waters, but it stays clean and untouched by dirt, organisms, and pollutants. The Lotus leaf self‐cleaning surface is hydrophobic and rough, showing a multi‐layer morphology of nanoscaled roughness. While hydrophobicity produces a high contact angle, the surface morphology reduces the adhesion of water drops to the surface, which slides easily across the leaf surface carrying the dirt particles with them. Different ultra‐hydrophobic, non‐transparent, and transparent coatings, for potential self‐cleaning applications, were produced on polycarbonate (PC) substrates, using hydrophobic chemistry and different configurations of roughening micro‐ and nano‐particles. However, in most cases, these coatings present low adhesion and durability. The stability and durability of the ultra‐hydrophobic surfaces is of key importance for potential, commercially viable, self‐cleaning applications thus durability and stability enhancement of such coatings was attempted by different methods, evaluated, and eventually improved using a solvent‐bonding technique. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
Sol-Gel-Derived Hybrid Coatings for Corrosion Protection   总被引:5,自引:0,他引:5  
The corrosion resistance of sol-gel-derived, organic-inorganic, silica-based hybrid coatings was studied. Hybrid sols were prepared by copolymerizing tetraethylorthosilicate (TEOS) and 3-methacryloxypropyltrimethoxysilane (MPS) with a two-step acid-catalyst process. Hybrid coatings were dip-coated on 304 and 316 stainless steel substrates and annealed at 300°C for 30 minutes. The adhesion, flexibility, and biocompatibility of the coatings were examined. Hybrid coatings were found to be relatively dense, uniform and defect free. Electrochemical analyses showed that the coatings provided excellent corrosion protection by forming a physical barrier, which effectively separated the anode from the cathode. In addition, further experimental results revealed that the corrosion patterns are strongly dependent on the nature of the stainless steel substrates. Some possible mechanisms for corrosion breakdown associated with each type of substrate are also introduced.  相似文献   

6.
In the field of biodegradable material, a new research area has emerged for magnesium (Mg) and its alloys because of its high biocompatibility and biomechanical compatibility. This review summarizes many important types of research that have been done on degradable coatings on magnesium and its alloys for various implant applications. When magnesium alloys come into contact with other metals, they have a low open circuit potential and are consequently prone to galvanic corrosion. When exposed to air or a humid environment, magnesium may rapidly oxidize and generate a thin layer of loose MgO. Its applications were limited due to these drawbacks. Different types of corrosion have been studied in relation to magnesium and its alloys. Several coating methods are described, split into conversion and deposition coatings based on the individual processing procedures employed. This paper covers the most recent advancements in the development of biodegradable Mg alloy coatings over the last decade, revealing that the corrosion resistance of Mg and its alloys increases in most of circumstances due to coatings. Corrosion rate, coating morphology, adhesion, and surface chemistry were identified and explored as significant elements affecting coating performance. Calcium phosphate coatings made by deposition or conversion processes established for orthopedic purposes are the focus of many investigations according to a review of the literature. More research is needed on organic-based biodegradable coatings to improve corrosion resistance. Improved mechanical qualities are also crucial for coating materials. Developing adequate methodologies for studying the corrosion process in depth and over time is still a hot topic of research.  相似文献   

7.
Molecular design, fabrication, and properties of thin-film coatings based on poly(2-methyl-2-oxazoline) (PMOX) and its copolymers were investigated to tackle problem of marine and bacterial fouling prevention. The ultraviolet crosslinkable macromonomer poly(2-methyl-2-oxazoline) dimethylacrylate was synthesized by cationic ring-opening polymerization in a microwave reactor initiated by 1,4-dibromobutane. In order to study the charge effect of the PMOX coatings on the adhesion of fouling organisms, PMOX surfaces with negative, neutral, and positive ζ-potential values were prepared by copolymerization with the positively charged monomer [2-(methacryloyloxy)-ethyl]trimethylammonium chloride. The coatings were stable in sea water for at least 1 month without significant reduction in the film thickness. The marine antifouling activity was evaluated against barnacle cyprids Amphibalanus amphitrite and algae Amphora coffeaeformis. Results showed that PMOX coatings provide effective reduction of the settlement regardless of the molar mass and surface charge of the polymer. Bacterial adhesion test showed that PMOX coatings effectively reduce Staphylococcus aureus and Escherichia coli adhesion. Owing to its good stability and antifouling activity PMOX has a great potential as antifouling coating for marine antifouling applications. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016, 54, 275–283  相似文献   

8.
Antifouling coatings are used to improve the speed and energy efficiency of ships by preventing organisms, such as barnacles and weed, building up on the underwater hull and helping the ships movement through the water. Typically, marine coatings are tributyltin self-polishing copolymer paints containing toxic molecules called biocides. They have been the most successful in combating biofouling on ships, but their widespread use has caused severe pollution in the marine ecosystem. The low surface energy marine coating is an entirely non-toxic alternative, which reduces the adhesion strength of marine organisms, facilitating their hydrodynamic removal at high speeds. In this paper, the novel low surface energy non-toxic marine antifouling coatings were prepared with modified acrylic resin, nano-SiO2, and other pigments. The effects of nano-SiO2 on the surface structure and elastic modulus of coating films have been studied, and the seawater test has been carried out in the Dalian Bay. The results showed that micro-nano layered structures on the coating films and the lowest surface energy and elastic modulus could be obtained when an appropriate mass ratio of resin, nano-SiO2, and other pigments in coatings approached. The seawater exposure test has shown that the lower the surface energy and elastic modulus of coatings are, the less the marine biofouling adheres on the coating films. Supported by High-Tech Research and Development Program of China (Grant No. 2004AA001520)  相似文献   

9.
Effect of temperature on the surface free energy of amorphous carbon films   总被引:5,自引:0,他引:5  
Diamond-like carbon (DLC) and tetrahedral amorphous carbon (ta-C) have attracted much attention recently for biomedical and antifouling applications due to their excellent biocompatibility and inherent nonstick properties. It has been demonstrated that the solid surface free energy is a dominant factor in cellular or fouling adhesion. However, few data for the surface free energy of DLC and ta-C coatings at temperatures in the range 37-95 degrees C are available. In this study DLC and ta-C coatings on stainless steel 304 sheets were prepared using an unbalanced magnetron sputtering system and a filtered cathodic vacuum arc system, respectively. The contact angles of water, diiodomethane and ethylene glycol on the coated surfaces at temperatures in the range 20-95 degrees C were measured using a Dataphysics OCA-20 contact angle analyzer. The surface free energy of the coatings and their components (e.g., dispersion, polar or acid/base portions) were calculated using various methods. The experimental results showed that the total surface free energy and dispersive surface free energy of the ta-C coatings, DLC coatings, stainless steel 304 and titanium decreased with increasing surface temperature, while the acid-base SFE component increased with increasing temperature.  相似文献   

10.
Adhesion of platelets to blood vessel walls is a shear stress dependent process that promotes arrest of bleeding and is mediated by the interaction of receptors expressed on platelets with various extracellular matrix (ECM) proteins that may become exposed upon vascular injury. Studies of dynamic platelet adhesion to ECM-coated substrates in conventional flow chambers require substantial fluid volumes and are difficult to perform with blood samples from a single laboratory mouse. Here we report dynamic platelet adhesion assays in two new microfluidic devices made of PDMS. Small cross-sections of the flow chambers in the devices reduce the blood volume requirements to <100 microl per assay, making the assays compatible with samples of whole blood obtained from a single mouse. One device has an array of 8 flow chambers with shear stress varying by a factor of 1.93 between adjacent chambers, covering a 100-fold range from low venous to arterial. The other device allows simultaneous high-resolution fluorescence imaging of dynamic adhesion of platelets from two different blood samples. Adhesion of platelets in the devices to three common ECM substrate coatings was verified to conform with published results. The devices were subsequently used to study the roles of extracellular and intracellular domains of integrin alphaIIbbeta3, a platelet receptor that is a central mediator of platelet aggregation and thrombus formation. The study involved wild-type mice and two genetically modified mouse strains and showed that the absence of the integrin impaired adhesion at all shear stresses, whereas a mutation in its intracellular domain reduced the adhesion only at moderate and high stresses. Because of small sample volumes required, the devices could be employed in research with genetically-modified model organisms and for adhesion tests in clinical settings with blood from neonates.  相似文献   

11.
The adhesion between a silicon tie-coat and epoxy primers, used in marine coating systems, has been studied in this work. Six epoxy coatings (with varying chain lengths of the epoxy resins), some of which have shown problems with adhesion to the tie-coat during service life, have been considered. The experimental investigation includes measurements of the surface tension of the tie-coat and the critical surface tensions of the epoxies, topographic investigation of the surfaces of cured epoxy coatings via atomic force microscopy (AFM), and pull-off tests for investigating the strength of adhesion to the silicon/epoxy systems. Calculations for determining the roughness factor of the six epoxy coatings (based on the AFM topographies) and the theoretical work of adhesion have been carried out. The coating surfaces are also characterized based on the van Oss-Good theory. Previous studies on the modulus of elasticity of the polymers involved have also been considered. It was found that adhesion problems might be due to inadequate wetting, the significantly different topographies, and differences in the mechanical strengths of the epoxies. Acid-base interactions calculated from the van Oss-Good theory were found useful in explaining the enhanced adhesion for some epoxy/silicon surfaces.  相似文献   

12.
The self-cleanable ability of coatings is important to prevent or remove polluting fingerprints, dust, water and oils for a number of applications. Fluorocarbon polymers have been used to provide self-cleanable ability due to their low surface energy. The efficiency of fluorine-modified coatings has been evaluated by measuring surface free energy using a contact angle measurement. However, this method is not sufficient to define the polluting-preventive ability or removability of fluorine-modified coatings due to the amount of fluorine content.A peel test can be used to determine the self-cleanable characteristics of fluorine-modified coatings by evaluating adhesion between the coating surface and pressure sensitive adhesives (PSAs). In addition, adhesion can be used to predict the amount of polluting-preventive ability or removability of coatings by comparing the peel strength of commercial PSAs. We designed fluorine-modified acrylic resins with different fluorine contents for a new testing method. Comparing the contact angle measurement with the peel test results, the peel test for the self-cleanable characteristic of coatings was more suitable than the contact angle measurement to predict the polluting-preventive ability and removability of coatings.  相似文献   

13.
Powder coatings found a wider use in corrosion protection of steel structure. In Europe very often double-layer systems are used, based on an adhesion promoting epoxy (EP) primer and a weathering stable top coat, mostly polyester (SP) sometimes EP/SP-hybrid powders. An interesting development is the use of zinc filled EP powders as primer to offer a cathodic protection to the steel surface. Powder systems with and without zinc were compared to proved coating systems based on liquid paint materials, where powder coating systems showed results comparable to these systems. Besides many advantages of powder coatings for corrosion protection there are still some problems. The workshops carring out the powder coating have to be in control of the surface pretreatment like chromating, but espescially phosphating and the work with the chromate-free pretreatment methods for galvanized steel. As always in the field of corrosion protection it is the surface pretreatment and preparation which determines the quality of the whole coating system decisively. This problem can be solved by appropriate working. In some years the problem with the general maintenance of powder coatings after weathering and ageing will be actual. This problem should be solved because of the homogeneous coatings on larger areas. Of importance will be the adhesion on the old coating and the appearance of the maintenance coating. The touch up of smaller parts as transport damages will be much more difficult in order to the appearance.  相似文献   

14.
New amphiphilic block copolymers S nSz m consisting of blocks with varied degrees of polymerization, n and m, of polystyrene, S, and polystyrene carrying an amphiphilic polyoxyethylene-polytetrafluoroethylene chain side-group, Sz, were prepared by controlled atom transfer radical polymerization (ATRP). The block copolymers, either alone or in a blend with commercial SEBS (10 wt% SEBS), were spin-coated in thinner films (200-400 nm) on glass and spray-coated in thicker films ( approximately 500 nm) on a SEBS underlayer (150-200 microm). Angle-resolved X-ray photoelectron spectroscopy (XPS) measurements proved that at any photoemission angle, varphi, the atomic ratio F/C was larger than that expected from the known stoichiometry. Consistent with the enrichment of the outer film surface (3-10 nm) in F content, the measured contact angles, theta, with water (theta w > or = 107 degrees ) and n-hexadecane (theta h > or = 64 degrees ) pointed to the simultaneous hydrophobic and lipophobic character of the films. The film surface tension gamma S calculated from the theta values was in the range 13-15 mN/m. However, the XPS measurements on the "wet" films after immersion in water demonstrated that the film surface underwent reconstruction owing to its amphiphilic nature, thereby giving rise to a more chemically heterogeneous structure. The atomic force microscopy (AFM) images (tapping mode/AC mode) revealed well-defined morphological features of the nanostructured films. Depending on the chemical composition of the block copolymers, spherical (ca. 20 nm diameter) and lying cylindrical (24-29 nm periodicity) nanodomains of the S discrete phase were segregated from the Sz continuous matrix (root-mean-square, rms, roughness approximately 1 nm). After immersion in water, the underwater AFM patterns evidenced a transformation to a mixed surface structure, in which the nanoscale heterogeneity and topography (rms = 1-6 nm) were increased. The coatings were subjected to laboratory bioassays to explore their intrinsic ability to resist the settlement and reduce the adhesion strength of two marine algae, viz., the macroalga (seaweed) Ulva linza and the unicellular diatom Navicula perminuta. The amphiphilic nature of the copolymer coatings resulted in distinctly different performances against these two organisms. Ulva adhered less strongly to the coatings richer in the amphiphilic polystyrene component, percentage removal being maximal at intermediate weight contents. In contrast, Navicula cells adhered less strongly to coatings with a lower weight percentage of the amphiphilic side chains. The results are discussed in terms of the changes in surface structure caused by immersion and the effects such changes may have on the adhesion of the test organisms.  相似文献   

15.
本征导电聚合物涂层及界面   总被引:1,自引:0,他引:1  
本文结合我们实验研究结果及国外最近的研究进展,对在绝缘基质的表面本征导电聚合物涂层的形成、结构和性能作了扼要的分析,指出了化学反应法中通过单体向整体聚合物表层扩散聚合形成的导电膜、界面的偶联作用和电荷转移作用等几种新近证实的原理,在加速导电聚合物涂层的应用中,具有重要意义。  相似文献   

16.
The wet adhesion of water borne acrylic dispersions is a crucial factor on the performance of outdoor coatings on wood. Pine sapwood was treated with several methods for surface activation to increase the wet adhesion of water borne acrylic dispersions. The wet adhesion was measured by pull-off tests as well as with a modified cross-cut test. Atmospheric plasma, corona treatment and fluorination increased the wet adhesion of the coating which is attributed to the increasing polar portion of the surface free energy. Other ways of improving the wet adhesion are the addition of promotors, the use of primers and organisational improvements.  相似文献   

17.
This article describes the development and the examination of surface coatings that suppress the adhesion between glass surfaces and polymer microspheres. Superparamagnetic doping allowed for exerting magnetic forces on the microbeads. The carboxyl functionalization of the polymer provided the means for coating the beads with polyethylene glycol (PEG) with different molecular weight. Under gravitational force, the microbeads settled on glass surfaces with similar polymer coatings. We examined the efficacy of removing the beads from the glass surfaces by applying a pulling force of ~1.2 pN. The percent beads remaining on the surface after applying the pulling force for approximately 5 s served as an indication of the adhesion propensity. Coating of PEG with molecular weight ranging between 3 and 10 kDa was essential for suppressing the adhesion. For the particular substrates, surface chemistry and aqueous media we used, coatings of 5 kDa manifested optimal suppression of adhesion: that is, only 3% of the microbeads remained on the surface after applying the pulling magnetic force. When either the glass or the beads were not PEGylated, the adhesion between them was substantial. Addition of a noncharged surfactant, TWEEN, above its critical micelle concentrations (CMCs) suppressed the adhesion between noncoated substrates. The extent of this surfactant-induced improvement of the adhesion suppression, however, did not exceed the quality of preventing the adhesion that we attained by PEGylating both substrates. In addition, the use of surfactants did not significantly improve the suppression of bead-surface adhesion when both substrates were PEGylated. These findings suggest that such surfactant additives tend to be redundant and that covalently grafted coatings of PEGs with selected chain lengths provide sufficient suppression of nonspecific interfacial interactions.  相似文献   

18.
The surface amination of poly (acrylonitrile) by ammonia plasma treatment has been studied. Furthermore, two other surface modification techniques have been investigated, the plasma chemical decomposition of an amino group containing chemical (tris-(2-aminoethyl)amine) onto the polymer surface and the surface reduction by lithium aluminium hydride. The three different methods are compared with respect to the adhesion improvement of the coatings onto the modified surfaces.The number of groups introduced on the surfaces has been determined by a wet chemical method.  相似文献   

19.
Antifouling coatings are used to improve the speed and energy efficiency of ships by preventing or- ganisms, such as barnacles and weed, building up on the underwater hull and helping the ships movement through the water. Typically, marine coatings are tributyltin self-polishing copolymer paints containing toxic molecules called biocides. They have been the most successful in combating bio- fouling on ships, but their widespread use has caused severe pollution in the marine ecosystem. The low surface energy marine coating is an entirely non-toxic alternative, which reduces the adhesion strength of marine organisms, facilitating their hydrodynamic removal at high speeds. In this paper, the novel low surface energy non-toxic marine antifouling coatings were prepared with modified acrylic resin, nano-SiO2, and other pigments. The effects of nano-SiO2 on the surface structure and elastic modulus of coating films have been studied, and the seawater test has been carried out in the Dalian Bay. The results showed that micro-nano layered structures on the coating films and the lowest surface energy and elastic modulus could be obtained when an appropriate mass ratio of resin, nano-SiO2, and other pigments in coatings approached. The seawater exposure test has shown that the lower the sur- face energy and elastic modulus of coatings are, the less the marine biofouling adheres on the coating films.  相似文献   

20.
The microfragmentation or the single-fiber composite method for the evaluation of fiber-matrix adhesion in polymer composites is presented emphasizing advantages and drawbacks. The improvements of the methods introduced in recent years (laser Raman spectroscopy, optical examination of interfacial region, estimation of the stress state at the interface, consideration of viscoelastic properties of the matrix) to obtain more detailed information on the interface failure mechanisms are described. A modified method with a coaxial geometry, which extends the applicability of the test to brittle matrices, is shown. A number of experimental results obtained both with thermoplastic and thermoset matrices containing carbon and glass fibers is reported. Chemical modifications of carbon fiber surfaces were carried out, which effectively changed the adhesion to the high-performance bismaleimide matrix. In particular, the treatment with ammonia is shown to be promising for improvement of adhesion in graphite/bismaleimide composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号