首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Calcium barium niobate Ca0.28Ba0.72Nb2O6 (CBN-28) crystals were grown by the Czochralski method. The effective segregation coefficients of Ca, Ba, Na elements in CBN-28 crystal growth were measured, and the rocking curve from 0 0 2 reflection of CBN-28 wafer was also measured by the high-resolution X-ray diffractometer D5005, and the full-width at half-maximum value was measured to be 70.6″. The measured dependence of dielectric constants on temperature showed the Curie temperature of the CBN-28 crystals is between 246.8 and 260 °C. Typical polarization–electric field (PE) hysteresis loops were measured at room temperature. Ferroelectric 180° domains were observed by scanning electron microscopy (SEM) on the etched (0 0 1) surface of the CBN-28 crystals. The transmittance of [0 0 1]-oriented CBN-28 crystals was measured and the result shows that optical properties of CBN-28 crystal are almost the same as those of SBN for wavelengths between 2500 and 7500 nm.  相似文献   

2.
Single crystals of ruby have been obtained from fluxed melts based on the systems Li2O–MoO3, Li2O–WO3, Na2O–WO3, 2PbO–3V2O5, PbO–V2O5–WO3, PbF2–Bi2O3 and Na3AlF6 by both the TSSG method and spontaneous crystallization at the temperatures 1330–900 °C. Al2O3 solubility has been measured for the flux composition of 2Bi2O3–5PbF2 in the temperature range 1200–1000 °C and dissolution enthalpy has been defined as 29.4 KJ/Mol. The composition of grown crystals was studied by electron microprobe analysis. The synthetic ruby contains from 0.51 to 6.38 at% of chromium admixture depending on the crystal growth conditions. Experimental results on growth conditions, composition and morphology of grown crystals are presented for each flux and temperature interval.  相似文献   

3.
NaBi(WO4)2 (NBW) crystals have been grown for the first time by modified-Bridgman method. Influences of some factors on the crystal growth process are discussed. X-ray powder diffraction experiments show that the unit cell parameters of NBW crystal are a=b=0.5284 nm, c=1.1517 nm, and V=0.3215 nm3. The differential thermal analysis shows that the NBW crystal melts at 923°C.  相似文献   

4.
Titanium oxide (TiO2) films were deposited on silicon substrates at the temperature in the range 50–600 °C by DC reactive magnetron sputtering. It was found that the anatase and rutile phases co-existed in the TiO2 films deposited at 450–500 °C, while only the anatase phase existed in those deposited at other temperatures. The mechanism of such a crystallization behavior of TiO2 films is preliminarily explained.  相似文献   

5.
Selective growth of WO2, W and WO3−x crystals from amorphous WO3 film by vacuum heating at 400–900°C was clarified. The grown WO3−x crystals were incommensurate structure based on crystallographic share structure. The growth process of WO2 crystal in the amorphous film was directly observed at high temperature in the electron microscope. The growth front of the WO2 crystal consumes WO3 microcrystallites with various orientations. The growth speed of the WO2 depended on WO3 microcrystallites orientation. The origin of the wavy growth front of WO2 was due to an orientation dependence of the WO3 microcrystallites.  相似文献   

6.
Pb[(Zn1/3Nb2/3)0.91Ti0.09]O3 (PZNT91/9) single crystals were grown by a modified Bridgman method directly from melt using an allomeric Pb[(Mg1/3Nb2/3)0.69Ti0.31]O3 (PMNT69/31) single crystal as a seed. X-ray diffraction (XRD) measurement confirmed that the as-grown PZNT91/9 single crystals are of pure perovskite structure. Electrical properties and thermal stabilization of PZNT91/9 crystals grown directly from melt exhibit different characters from those of PZNT91/9 crystals grown from flux, although segregation and the variation of chemical composition are not seriously confirmed by X-ray fluorescence analysis (XPS). The [0 0 1]-oriented PZNT91/9 crystals cut from the middle part of the as-grown crystal boules exhibit broad dielectric-response peaks at around 105 °C, accompanied by apparent frequency dispersion. The values of piezoelectric constant d33, remnant polarization Pr, and induced strain are about 1800–2200 pC/N, 38.8 μC/cm2, and 0.3%, respectively, indicating that the quality of PZNT crystals grown directly from melt can be comparable to those of PZNT91/9 single crystals grown from flux. However, further work deserves attention to improve the dielectric properties of PZNT crystals grown directly from melt. Such unusual characterizations of dielectric properties of PZNT crystals grown directly from melt are considered as correlating with defects, microinhomogeneities, and polar regions.  相似文献   

7.
YBa2Cu4O8 is a stoichiometric oxide superconductor of Tc80 K. Unlike YBa2Cu3O7−δ, this compound is free from oxygen vacancy or twin formation and does not have any microscopic disorder in the crystal. Doping with Ca raises its Tc to 90 K. The compound is a promising superconductor for technological application. Up to now, single crystals have not been grown without using specialized apparatus with extremely high oxygen pressure up to 3000 bar and at over 1100 °C due to the limited range of reaction kinetics of the compound. This fact has delayed the progress in the study of its physical properties and potential applications. We present here a simple growth method using KOH as flux that acts effectively for obtaining high-quality single crystals in air/oxygen at the temperature as low as 550 °C. As-grown crystals can readily be separated from the flux and exhibit a perfect orthorhombic morphology with sizes up to 0.7×0.4×0.2 mm3. Our results are reproducible and suggest that the crystals can be grown using a conventional flux method under ambient condition.  相似文献   

8.
Large optical-quality Yb:YAl3(BO3)4(Yb:YAB) crystals have been grown by the flux method. The thermal properties of Yb:YAB crystal were measured for the first time. The thermal properties of Yb:YAB crystal with different Yb3+ ion concentrations are also reported. The results show that the ytterbium concentration influences the properties of Yb:YAB crystal. The specific heat decreases with the increase of Yb3+ ion concentrations in the experiment range. Apparently, the thermal expansion coefficient increases along the c-direction with the increase of Yb3+ ion concentrations, while it changes slightly along the a-direction. The output laser in 1120–1140 nm ranges has been demonstrated pumped by InGaAs laser. The slope efficiency is 3.8%. The self-frequency-doubling output power of 1 mW is achieved.  相似文献   

9.
We report the liquid-phase epitaxial growth of Zn3P2 on InP (1 0 0) substrates by conventional horizontal sliding boat system using 100% In solvent. Different cooling rates of 0.2–1.0 °C/min have been adopted and the influence of supercooling on the properties of the grown epilayers is analyzed. The crystal structure and quality of the grown epilayers have been studied by X-ray diffraction and high-resolution X-ray rocking measurements, which revealed a good lattice matching between the epilayers and the substrate. The supercooling-induced morphologies and composition of the epilayers were studied by scanning electron microscopy and energy dispersive X-ray analysis. The growth rate has been calculated and found that there exists a linear dependence between the growth rate and the cooling rate. Hall measurements showed that the grown layers are unintentionally doped p-type with a carrier mobility as high as 450 cm2/V s and a carrier concentration of 2.81×1018 cm−3 for the layers grown from 6 °C supercooled melt from the cooling rate of 0.4 °C/min.  相似文献   

10.
In this paper, polycrystalline materials of BaWO4 were synthesized by solid-state phase method, and a single crystal of BaWO4 was successfully grown along a and c-axis direction by using the Czochralski method. Up to 20×22×80 mm3 BaWO4 crystal was obtained, and X-ray powder diffraction results show that the as-grown BaWO4 crystal belongs to the scheelite structure. The effective segregation coefficients of Ba and W of the BaWO4 crystal were measured by the X-ray fluorescence method, and the effective segregation coefficients of Ba and W were near 1. The rocking curve from (2 0 0) diffraction plane of as-grown BaWO4 single crystal was measured on the High-resolution X-ray diffractometer D5005, and the full-width at half-maximum value was found to be 26.64′′ The density and hardness of the BaWO4 crystal was measured, the measured density was in agreement with the calculated result, and the Mohs hardness was about 4.  相似文献   

11.
The single-crystalline β-wollastonite (β-CaSiO3) nanowires were prepared via a simple hydrothermal method, in the absence of any template or surfactant using cheap and simple inorganic salts as raw materials. Xonotlite [Ca6(Si6O17)(OH)2] nanowires were first obtained after hydrothermal treatment at a lower temperature of 200 °C for 24 h, and after being calcinated at 800 °C for 2 h, xonotlite nanowires completely transformed into β-wollastonite nanowires and the wire-like structure was preserved. The synthesized β-wollastonite nanowires had a diameter of 10–30 nm, and a length up to tens of micrometers, and the single-crystalline monoclinic parawollastonite structured β-wollastonite was identified by XRD with the space group of P21/a and cell constants of a=15.42 Å, b=7.325 Å, c=7.069 Å and β=95.38°. A possible growth mechanism of β-wollastonite nanowires was also proposed. The advantages of this method for the nanowire synthesis lie in the high yield, low temperature and mild reaction conditions, which will allow large-scale production at low cost.  相似文献   

12.
Single crystals of potassium p-nitrophenolate dihydrate (NPK·2H2O) have been grown successfully using the isothermal solvent evaporation technique. It is a new semiorganic nonlinear optical crystal, possessing a deff of about 1.5 times that of lithium niobate and in which the K+ ions are bonded to the nitro group instead of bonding with the phenolic O. Large single crystals of dimension upto 20×6×4 mm3 are harvested within a period of 60 days. The grown crystals are subjected to single crystal X-ray, FTIR and DRS-UV visible spectral, thermal and microhardness analyses. Single crystal X-ray analysis confirms the molecular formula and the structure of the crystal. FTIR spectral studies verify the functional groups present in the crystal. The DRS-UV visible spectrum proved the optical transparency of the crystal in the entire visible and near infrared region. Thermal studies reveal that the crystals are stable upto 180 °C. Microhardness measurements on the cleaved plane (1 1 0) explain the strength and slip direction in the crystal. The SHG efficiency of the crystal is examined by performing the Kurtz powder test using Nd:YAG laser.  相似文献   

13.
Calcium carbonate precipitates are prepared from a solution of CaCl2 and K2CO3 in the presence of polyacrilic acid. The effect of polyacrilic acid incorporation in the [25–80 °C] temperature range on crystal morphologies and CaCO3 precipitated polymorph concentrations are investigated using scanning electron microscopy and X-ray diffraction quantitative microstructural and phase analysis. Large changes in morphology and phase proportions are observed in the presence of polyacrylic acid, which strongly depend on the solution temperature. While crystallization of vaterite is favoured in the presence of polyacrilic acid up to 50 °C, it is largely destabilized at higher temperatures. Our process also enables the elaboration of particles in the range 10–20 nm.  相似文献   

14.
Thin films of crystalline lithium niobate (LN) grown on Si(1 0 0) and SiO2 substrates by electron cyclotron resonance plasma sputtering exhibit distinct interfacial structures that strongly affect the orientation of respective films. Growth at 460–600 °C on the Si(1 0 0) surface produced columnar domains of LiNbO3 with well-oriented c-axes, i.e., normal to the surface. When the SiO2 substrate was similarly exposed to plasma at temperatures above 500 °C, however, increased diffusion of Li and Nb atoms into the SiO2 film was seen and this led to an LN–SiO2 alloy interface in which crystal-axis orientations were randomized. This problem was solved by solid-phase crystallization of the deposited film of amorphous LN; the degree of c-axis orientation was then immune to the choice of substrate material.  相似文献   

15.
Gallium arsenide (GaAs) deposition was carried out in a horizontal quartz reactor tube with trimethylgallium (TMGa) and arsine (AsH3) as precursors, using a hydrogen (H2) carrier gas. Temperatures were in the range 400–500 °C, where surface reactions limit deposition rate. Nucleation time and deposition rate were monitored using laser interferometry, optimum reflectance was gained by aligning a quartz wafer to back reflect the incident beam. The 980 nm infrared laser beam was sufficiently long in wavelength to be able to penetrate the wall deposit. Results showing the effect of temperature and V/III ratio on the nucleation time and deposition rate are presented, where with temperature the nucleation delay was observed to reduce and the growth rate to increase. The nucleation delay is consistent with a thermally activated surface nucleation for the parasitic GaAs. A theoretical growth rate model, based on a restricted set of reaction steps was used to compare with the experimental growth rates. Without any free parameters, the growth rates from theoretical calculation and experiment agreed within a factor of two and showed the same trends with V/III ratio and temperature. The non-linearity of the theoretical growth rates on an Arrhenius plot indicates that there is more than one dominant reaction step over the temperature range investigated. The range of experimental activation energies, calculated from Arrhenius plots, was 17.56–23.59 kJ mol−1. A comparison of these activation energies and minimum deposition temperature with the literature indicates that the wall temperature measurement on an Aixtron reactor is over 100 °C higher than previously reported.  相似文献   

16.
Micro-pulling-down (μ-PD) growth apparatus was modified for fluoride crystals. PrF3 was grown with various concentrations of Ce3+ from 0–100%. The crystals were transparent and colorless (CeF3) or greenish and 3 mm in diameter and 15–50 mm in length. Neither visible inclusions nor cracks were observed. Radioluminescence spectra and decay kinetics were measured for the sample set at room temperature. In comparison to the Czochralski or Bridgman method, the μ-PD method allows to produce single crystalline material in a faster thus more economic way. Once it is established for the fluoride crystals, it is an efficient tool for exploring the field of new functional fluorides.  相似文献   

17.
In this letter, Nd : Ca4Gd0.275Y0.725O(BO3)3 (Nd : GdYCOB) single crystal with good optical quality and large size has been grown by the Czochralski method. The absorption and fluorescence spectra have been measured. The self-frequency doubling (SFD) laser output of Nd : GdYCOB at 0.53 μm has been demonstrated when a Nd : GdYCOB crystal sample with dimensions of 3 mm×3 mm×7 mm (the phase-matched angle is θ=78.8°, Φ=90°) is pumped by a cw Ti : sapphire laser.  相似文献   

18.
Transparent Na modified potassium lithium niobate (Na0.23K2.60Li1.82Nb5.35O15.70; NKLN) crystal was successively grown by the Czochralski method using RF induction heating from melt composition Na2O:K2O : Li2O:Nb2O5=2:30:25:43 mol%. NKLN crystal showed a tetragonal tungsten bronze structure with lattice constants a=12.5446±0.0010 Å and c=4.0129±0.0005 Å at room temperature. The dielectric constant along the c-axis ε33 showed a sharp maximum around 480 °C. Optical transmission edge was 370 nm and optical transmission spectra showed no absorption at wavelengths ranging from 380 to 800 nm. The structural and optical properties of NKLN were similar to those of the near stoichiometric KLN crystals. We believe that the growth of NKLN by the Czochralski method has an advantage for a large size and high-quality crystal.  相似文献   

19.
Ce substituted Bi1−xCexFeO3 (BCFO) films with x=0–0.15 were deposited on indium tin oxide (ITO)/glass substrates by sol–gel process annealed at 500 °C. Rhombohedral phase was confirmed by XRD study and no impure phases were observed till x=0.15. Substantially enhanced ferroelectricity was observed at room temperature due to the substitution of Ce. In the films with x=0.05 and 0.10, the double remnant polarization are 75.5 and 57.7 μC/cm2 at an applied field 860 kV/cm. Moreover, the breakdown field was enhanced in the films with Ce substitution.  相似文献   

20.
Cobalt ferrite (CoFe2O4) thin film is epitaxially grown on (0 0 1) SrTiO3 (STO) by laser molecular beam epitaxy (LMBE). The growth modes of CoFe2O4 (CFO) film are found to be sensitive to laser repetition, the transitions from layer-by-layer mode to Stranski–Krastanov (SK) mode and then to island mode occur at the laser repetition of 3 and 5 Hz at 700 °C, respectively. The X-ray diffraction (XRD) results show that the CFO film on (0 0 1) SrTiO3 is compressively strained by the underlying substrate and exhibits high crystallinity with a full-width at half-maximum of 0.86°. Microstructural studies indicate that the as-deposited CFO film is c-oriented island structure with rough surface morphology and the magnetic measurements reveal that the compressive strained CoFe2O4 film exhibits an enhanced out-of-plane magnetization (190 emu/cm3) with a large coercivity (3.8 kOe).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号